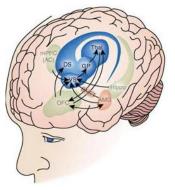


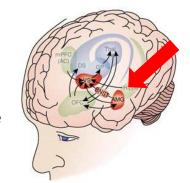
Paracelso nel XXI secolo: «Dosis sola facit, ut venenum non fit» Bologna 11-12 Febbraio 2020 Savoia Regency Horel

"Nuove frontiere per il trattamento del Disturbo da Uso di cocaina: outcome clinici e follow-up".

12 febbraio 2020



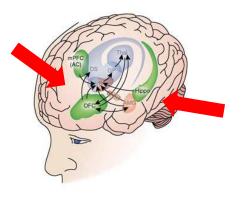
Graziella Madeo, M.D., Ph.D Novella Fronda Foundation



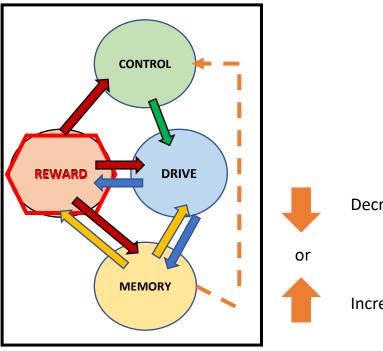
Novella Fronda Foundatio Research Advances for Brain Health

Addiction is a disease of dysregulated circuits and networks

Binge /Intoxication Stage (Incentive salience)



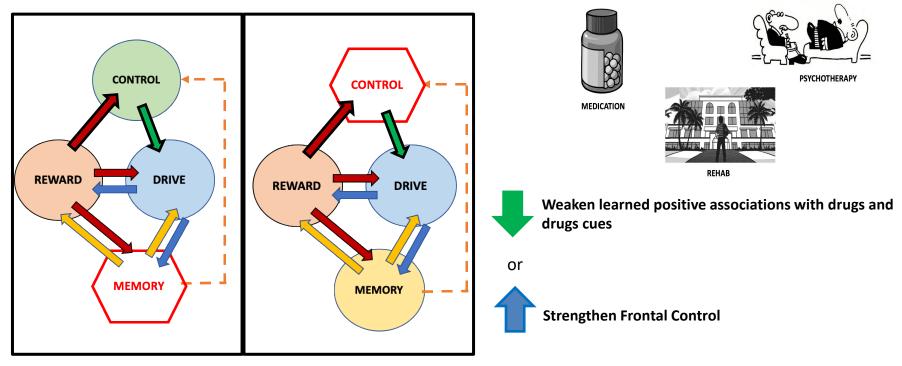
Withdrawal/Negative affect Stage (Reward deficit and Stress surfeit)


Preoccupation/Anticipation «Craving» Stage

(Executive Function Deficit)

- Cue reactivity
- Reward processing
- Executive control (e.g. attention, inhibitory control)

Treating the ADDICTED Brain


Adapted from Volkow et al Neuron 2011

MEDICATION REHAB

Decrease the reward value of the drug

Increase the rewarding value of non-drug reinforcers

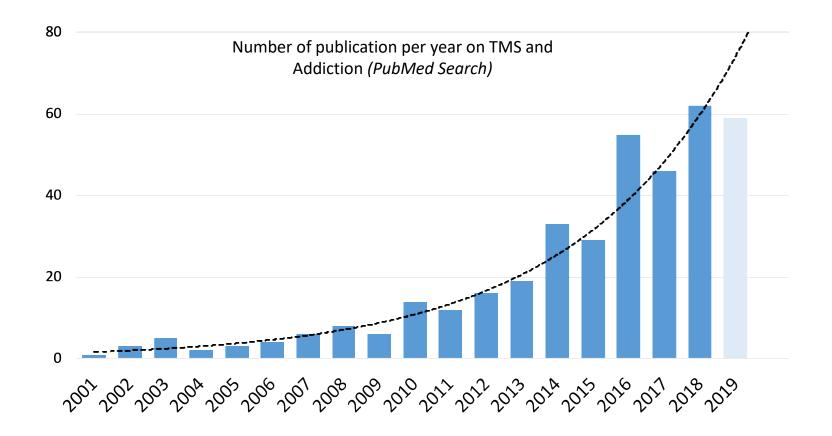
Treating the ADDICTED Brain

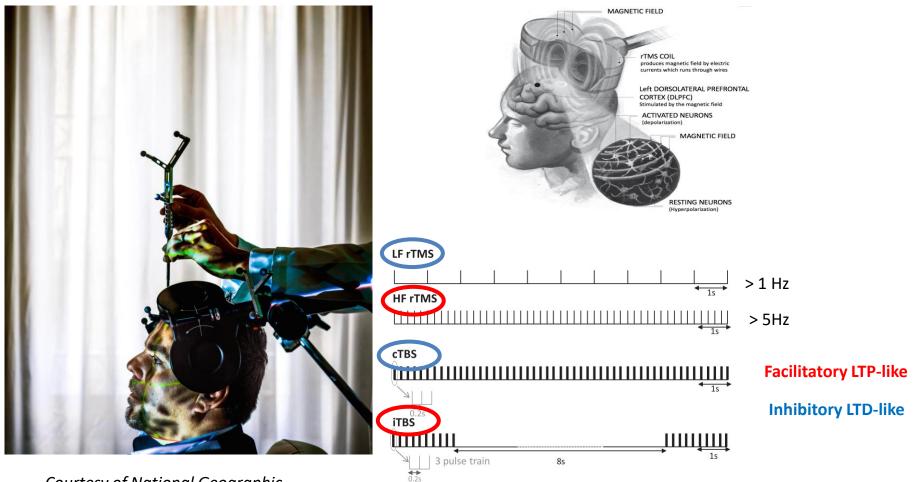
Adapted from Volkow et al Neuron 2011

Treating the ADDICTED Brain

MEDICATION

PSYCHOTHERAPY

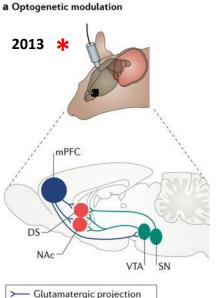

THE FOURTH TOOL

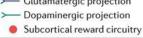

REHAB

Why neuromodulation as potential treatment for addictions

TMS for the ADDICTED Brain

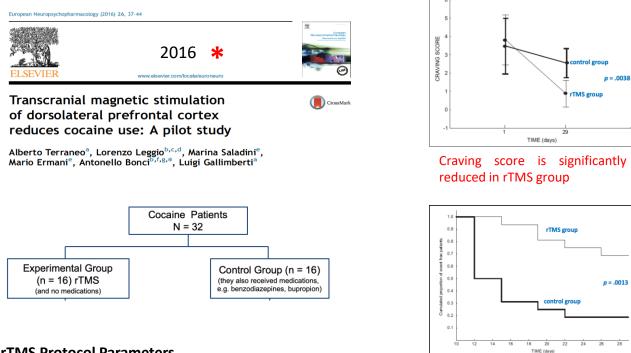
Courtesy of National Geographic


Why neuromodulation as potential treatment for addictions


Volkow et al **1992, 1993** *

rTMS

Reduced activity of the prefrontal brain areas, involved with salience attribution, motivation and compulsive behaviors.



Nature Reviews | Neuroscience

Chen et al, Nature 2013 Deisseroth eta al, Nature Reviews

rTMS stimulation protocol of I-DLPFC reduces cocaine use

rTMS Protocol Parameters

15 Hz, 100% of rMT, 40 trains, 60 pulses per train, 15 s intertrain-interval, 2400 pulses over the left-DLPFC (x=-50, y=30, z=36) Proportion of cocaine free patients is significantly higher in rTMS group compared to control group.

rTMS studies on CUDs

Studies	N	Design	Number of sessions	Stimulation site	F (Hz)/ % MT	Total pulses per session	Effects	Adverse Events
Camprodon et al., (2007)	6	Randomized, cross-over study	2 (left or right side)	Left and Right DLPFC	10/ 90%	2000	Right but not left rTMS reduced craving	Not reported
Politi et al. (2008)	36	Open-label study	10	Left DLPFC	15/ 100%	600	Reduction in spontaneous craving	Not reported
Hanlon et al. (2015)	11	Single-blind, sham- controlled, crossover study	2 (occurring within 7– 14 days of each other)	left mPFC (cTBS)	5/110%	1800	Significant reduction in self- reported cue induced craving after active cTBS but not after sham cTBS	Transient painfulness subsiding after the first 15-30 s
Bolloni et al., (2016)	10	Double-blind randomized, sham-controlled, parallel group trial	12	Bilateral PFC	10/ 100%	1000	No effect on cocaine intake in the active group but long-term reduction on cocaine intake observed in active group when considered the time as factor	Mild headache after active stimulation
Terraneo et al., (2016)	32	Open-label, randomized study. rTMS or standard pharmacological treatment	8	Left DLPFC	15/ 100%	2400	Reduction in cocaine use and craving	Mild discomfort at the start of stimulation
Rapinesi et al., (2016)	7	Open-label study	12	Left DLPFC	15 / 100%	720	Significant reduction in craving following rTMS	Not reported
Sanna et al. (2019)	47	Between-group study design with 2 treatment conditions (HF rTMS vs iTBS)	20 (HF rTMS or iTBS)	Bilateral PFC	15/100% (HF rTMS) 5/80% (iTBS)	2400 (HF rTMS) 600 (iTBS)	reductions in cocaine craving and intake after treatment	Mild head discomfort

Main limitations of available studies

Small sample size

Short-period of follow-up

Long-term effects of rTMS on drug consumption, relapses and craving

Stimulation parameters variability: intensity, frequency, number of sessions, brain

target.

Clinical assessment of outcome measures

Sham-controlled, RCTs

INTAM Network International Collaborative Network of TES/TMS Trials for Addiction Medicine

Transcranial Electrical and Magnetic Stimulation (tES and TMS) for Addiction Medicine: A consensus paper on the present state of the science and the road ahead

Authors:

Hamed Ekhtiari^{1*}, Hosna Tavakoli^{2, 3}, Giovanni Addolorato^{4, 5}, Chris Baeken⁶, Antonello Bonci^{7, 8,} ⁹, Salvatore Campanella¹⁰, Luis Castelo-Branco¹¹, Gaëlle Challet-Bouju¹², Vincent P. Clark¹³, Eric Claus¹⁴, Pinhas N. Dannon¹⁵, Alessandra Del Felice¹⁶, Tess den Uyl¹⁷, Marco Diana¹⁸, Massimo di Giannantonio¹⁹, John R. Fedota²⁰, Paul Fitzgerald²¹, Luigi Gallimberti²², Marie Grall-Bronnec¹², Sarah C. Herremans⁶, Martin J. Herrmann²³, Asif Jamil²⁴, Eman Khedr²⁵, Christos Kouimtsidis²⁶, Karolina Kozak^{27, 28}, Evgeny Krupitsky^{29, 30}, Claus Lamm³¹, William V. Lechner³², Graziella Madeo⁷, Nastaran Malmir³, Giovanni Martinotti¹⁹, William McDonald³³, Chiara Montemitro¹⁹, Ester Nakamura-Palacios³⁴, Mohammad Nasehi³⁵, Xavier Noël¹⁰, Masoud Nosratabadi³⁶, Martin Paulus¹, Mauro Pettorruso¹⁹, Basan Pradhan³⁷, Samir K. Praharai³⁸, Haley Rafferty¹¹, Gregory Sahlem³⁹, Betty io Salmeron⁷, Anne Sauvaget^{40,41}, Renée S. Schluter¹⁷, Carmen Sergiou⁴², Alireza Shahbabaie²³, Christine Sheffer⁴³, Primavera A. Spagnolo⁴⁴, Vaughn R. Steele²⁰, Ti-fei Yuan⁴⁵, Josanne van Dongen⁴², Vincent Van Waes⁴⁶, Ganesan Venkatasubramanian⁴⁷, Antonio Verdejo-García⁴⁸, Ilse Verveer⁴², Justine Welsh³³, Michael J. Wesley⁴⁹, Katie Witkiewitz¹⁴, Fateme Yavari²⁴, Mohammad-Reza Zarrindast⁵⁰, Laurie Zawertailo²⁸, Xiaochu Zhang⁵¹, Yoon-Hee Cha¹, Tony P. George^{27, 28}, Flavio Frohlich⁵², Anna E. Goudriaan^{17, 53}, Shirley Fecteau⁵⁴, Stacey Daughters⁵², Elliot A. Stein²⁰, Felipe Fregni¹¹, Michael A. Nitsche^{24, 55}, Abraham Zangen⁵⁶, Marom Bikson⁵⁷, Colleen A. Hanlon³⁹.

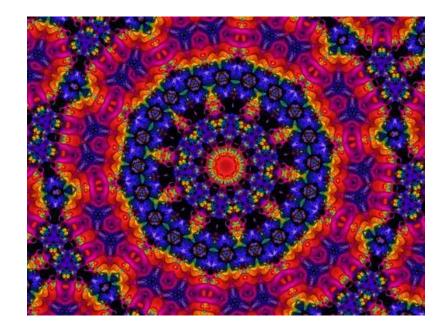
Neuroscience & Biobehavioral Reviews

Main limitations of available studies

Small sample size

Short-period of follow-up

Long-term effects of rTMS on drug consumption, relapses and craving


Stimulation parameters variability: intensity, frequency, number of sessions, brain

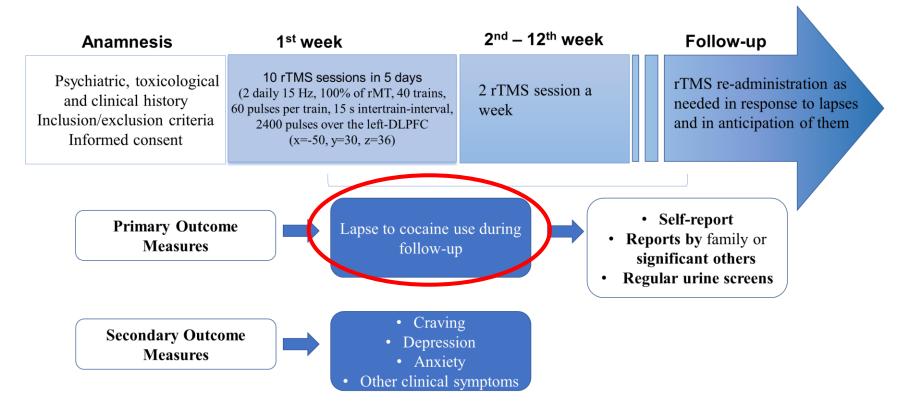
target.

Clinical assessment of outcome measures

Sham-controlled, RCTs

Patient Population treated with rTMS: 1000 + patients as of beginning of June 2019. Pro and cons of a naturalistic approach

Long-term follow-up study


2-years and 8 months follow-up of cocaine use in 284 patients undergoing rTMS over left-DLPFC

- Large Cohort of patients \rightarrow 284 patients with CUD (268M, 16F);
- Period of observation \rightarrow 2-years and 8 months (median 164 days) 2013 2017;
 - Main Goal → Safety and efficacy of rTMS on long-term follow-up.

Long-term follow-up study

2-years and 8 months follow-up of cocaine use in 284 patients undergoing rTMS over left-DLPFC

rTMS Treatment Protocol

Demographic characteristics

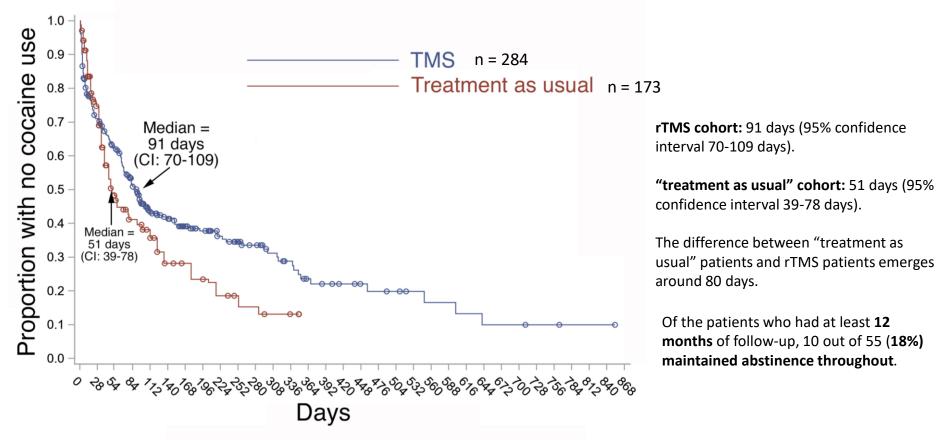
	Total sample (n=284)	Closely followed subsample (n=147)
Age (mean, SD)	38.3 (8.4)	36.6 (7.7)
Sex		
Male	268 (94%)	139 (95%)
Female	16 (6%)	8 (5%)
Cocaine use before treatment entry*		
Daily	45%	30%
Weekly or more (not daily)	45%	51%
Monthly or more (not weekly)	2%	5%
Less than monthly	7%	14%
Cocaine route of administration*		
Snorting	90%	86%
Smoking	9%	11%
Both	1%	3%

147 cases had accurate data about patterns of cocaine use and abstinence

137 cases had only the time of initial lapse to cocaine use or loss to follow-up

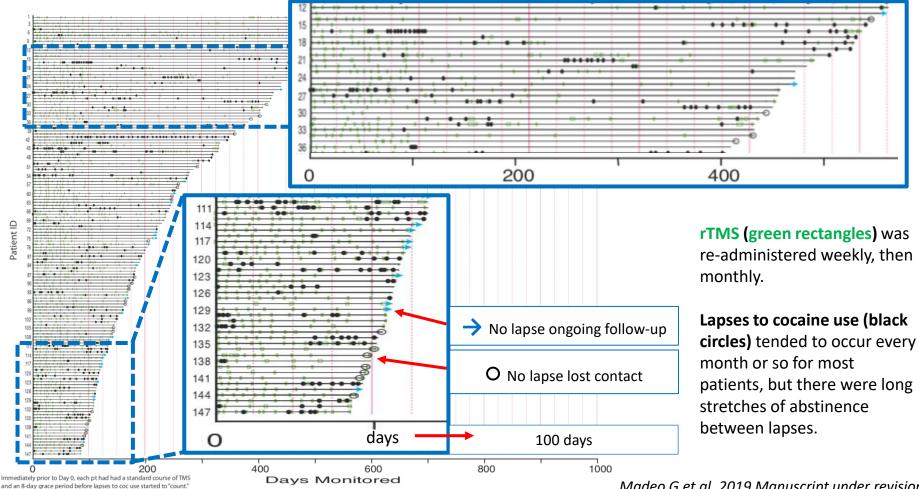
Madeo G et al, 2019 Manuscript under revision

Safety on long-term follow-up

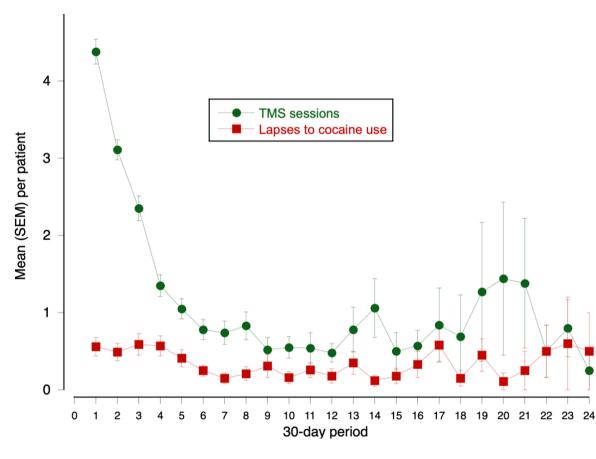

Adverse events (AEs) reported by 41 of the 284 patients.

Adverse Events	Case n
Headache	23
Hypomania	5
Anxiety	2
Irritability	2
Teeth pain	2
Scalp discomfort	1
Angioedema and urticaria	1
Distractibility	1
Dizziness	1
Nausea	1
Nausea and numbness	1
Seizure	1

The seizure occurred in a 27year-old woman 66 days after her first rTMS session. She has used cocaine shortly before; she had not recently undergone rTMS.


Madeo G et al, 2019 Manuscript under revision

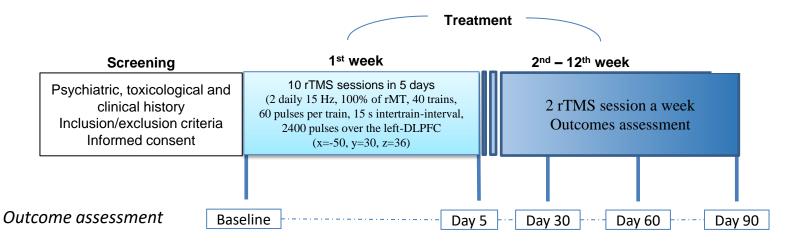
Time to first lapse of cocaine use in full sample and comparison cohort (Dodge et al 2011).


In both cases patients had just been discharged from an inpatient stay, and both received treatment as needed during a lengthy outpatient follow-up.

Patterns of cocaine use and abstinence in the closely followed subsample

Madeo G et al, 2019 Manuscript under revision

Maintenance rTMS sessions and lapses in closely followed subsample, month by month


The graph illustrates more clearly that the gradual decrease in readministration of rTMS (green circles) did not leave patients more vulnerable to lapses to cocaine use (red circle).

The mean quantity of cocaine use per patient was less than $1 \cdot \text{gr/month}$.

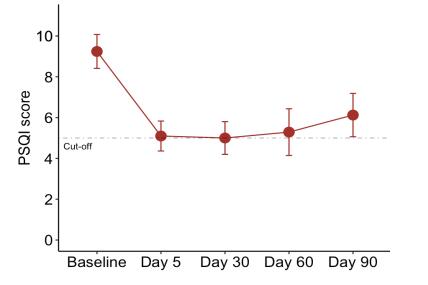
Mean frequency of cocaine use significantly decreased from a mean of 18.7 day/month to less than 1.0 day/month.

The reduction of the rTMS sessions is not coupled with an increase of the number of lapses. The number of lapses remains stable over time.

Retrospective chart review of 87 patients diagnosed with CUD treated with rTMS protocol over the left DLPFC.

- **PSQI**: Pittsburgh Sleep Quality Index
- CCQ: Cocaine Craving Questionnaire
- BDI-II: Beck Depression Inventory II
- SAS: Self-rating anxiety scale
- **GSI:** Global Severity Index from Symptoms Checklist 90

	Active gro	up (n=10) §	Wait-list group (n=10)		
	Day 0	Day 30	Day -30	Day 0	
PSQI ^a	9.00 (4.85)	3.3 (1.56)	6.4 (3.33)	6.9 (3.54)	
Change from first assessment		-5.7 (1.57) *		0.5 (1.57)	
CCQ ^b	18.8 (9.25)	1.00 (2.82)	24.8 (13.79)	21.9 (12.93)	
Change from first assessment		-17.8 (4.74) *		-2.9 (4.74)	
BDI-II ^c	18.7 (8.17)	2.7 (2.31)	15.6 (7.48)	14.1 (7.35)	
Change from first assessment		-16 (3.01) *		-1.5 (3.01)	
SAS ^d	47.62 (9.04)	32.62 (6.54)	45.12 (8.21)	43.00 (8.94)	
Change from first assessment		-15 (3.68) *		-2.12 (3.68)	
GSI ^e	68.13 (17.90)	42.08 (7.31)	61.95 (9.70)	57.85 (11.74)	
Change from first assessment		-26.05 (5.50) *		-4.1 (5.5)	


Data are presented as Mean (SD);

* p value <.001; \$ A small sample of equal numerosity and clinical characteristics of wait-list randomly selected from the 87 patients recruited for the study.

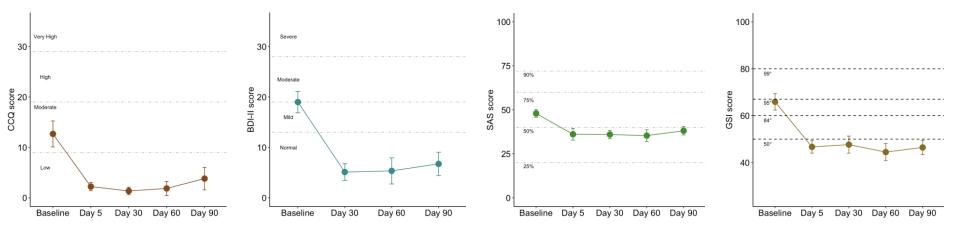
^a Pittsburgh Sleep Quality Inventory – general sleep quality index; ^b Cocaine Craving Questionnaire; ^c Beck Depression Inventory – II; ^d Self-rating Anxiety Scale; ^e Global Severity Index from Symptoms Checklist – 90 – Revised

Research question 1: Are the scores at each timepoint significantly different from the baseline?

	Baseline	Day 5	Day 30	Day 60	Day 90	
PSQI	9.24 (3.89)	5.09 (3.33)	5 (3.13)	5.28 (3.47)	6.12 (3.32)	
Change from Baseline		-4.14 (0.53) *	-4.24 (0.58) *	-3.95 (0.67) *	-3.11 (0.66) *	
Notes: Data are presented as Mean (SD); * p value <.001;						

PSQI score is significantly reduced after 5 days rTMS treatment and persist after 90 days compared to the assessment at TO.

No significant changes of PSQI scores are among T1, T2 and T3.


Percentage with PSQI score \geq 5

Baseline: 88.5% Day 90: 62.5%

(Gomez-Perez, Cardullo et al., 2019, Manuscript under revision)

Research question 1: Are the scores at each timepoint significantly different from the baseline?

	Baseline	Day 5	Day 30	Day 60	Day 90		
CCQ	12.67 (10.93)	2.21 (3.29) *	1.34 (2.79) *	1.84 (4) *	3.8 (6.5) *		
BDI-II	18.99 (9.91)	_§	5.09 (6.45) *	5.33 (7.67) *	6.72 (7.2) *		
SAS	47.93 (10.01)	36.11 (8.45) *	35.97 (9.44) *	35.33 (9.52) *	38.09 (7.38) *		
GSI	65.91 (16.53)	46.69 (12.17) *	47.67 (14.46) *	44.49 (10.92) *	46.46 (9.56) *		
Notes: Data are presented as Mean (SD); * Comparison to baseline p value <.001; § BDI-II was not administered at day 5 because it refers to the last two							
weeks							

(Gomez-Perez, Cardullo et al., 2019, Manuscript under revision)

Research question 2: Which are the best predictors of the outcomes?

Predictors	PSQI	CCQ	BDI	SAS	GSI
TMS last 30 days	-0.11 (0.03) *	-0.22 (0.07) *	-0.37 (0.08) **	-0.34 (0.08) **	-0.40 (0.13) *
Use last 30 days	0.13 (0.02) **	0.37 (0.06) **	0.20 (0.07) *	0.18 (0.07) *	0.33 (0.10) *
Time			-0.09 (0.02) **	-0.07 (0.01) **	-0.13 (0.02) **
First experience				-0.50 (0.17) *	
Addiction age					
Age					
Education					
Notes: Data are presented as estimate (Standard Error); * p < 0.01; ** p < 0.001;					

Both the number of rTMS sessions and the use of cocaine in the preceding 30 days correlate with clinical improvements

(Gomez-Perez, Cardullo et al., 2019, Manuscript under revision)

CONCLUSIONS

TMS is a non-invasive neuromodulation technique offering a new circuit-based therapeutic intervention for addictions, including CUD.

TMS protocol stimulation, targeting the prefrontal areas, seems effective in reducing craving and cocaine consumption.

Despite the limitations of a naturalistic clinical setting, our study following-up patients for more than 2 years is supporting TMS as a safe therapeutic intervention:

- for reducing lapse to cocaine use over time,
- cocaine consumption
- prolong abstinence.

Common self-reported withdrawal/abstinence symptoms, including sleep disturbances, anxiety, depression, and other negative affect states appear to benefit from rTMS treatment

TMS should be integrated in clinical settings with conventional treatments, including psychotherapy and medication.

Sham-controlled RCTs with more uniform reporting standards in TMS research are needed already ongoing (ClinicalTrials.gov identifiers NCT03607591, NCT03333460, and NCT02986438).

Likewise, shared research questions, protocols and data repository will help to FuturiZe research and clinical practice for Addictions.

Thank you!

Luigi Gallimberti Antonello Bonci Alberto Terraneo Sonia Chindamo Sonia DeMarchi Graziella Madeo **Stefano Cardullo** Luis Gomez Perez Veronica Farruggia **Diego Cuppone** Silvia Soldatesca Marta Ballin Elena Marini Linda Marconi Giulia Bussolotto Sonia Specie Crisitna Mattei Doris Radolovic Mariagrazia Garofolo Annalisa Madeo

David Epstein, Lorenzo Leggio, Vera Spagnolo, Elliot Stein, Thomas Ross, Mary Lee, Giovanni Martinotti, Massimo di Giannantonio, Tommi Raij, Aapo Nummenmaa, Yihong Yang, Vaughn Steele.

Demographic Features	All (n=87)
Age (years) [Mean (SD)]	37.67 (7.53)
Gender (female/male)	2/85
Education (years) [Mean (SD)]	12.51 (3.2)
Age at first experience (years) [Mean (SD)]	20.55 (5.65)
Age at addiction (years) [Mean (SD)]	28.62 (8.8)
rTMS sessions number [Mean (SD)]	29.17 (6.34)
PSQI score <u>></u> 5 at baseline [%]	88.5
CCQ score at baseline [Mean (SD)]	12.66 (10.93)
BDI-II score at baseline [Mean (SD)]	18.98 (9.91)
SAS score at baseline [Mean (SD)]	47.93 (10.01)
GSI score at baseline [Mean (SD)]	65.91 (16.53)

Analyses

- Repeated-measures analysis of variance (ANOVA) with post-hoc pairwise comparisons to assess the change overtime
- linear mixed-effects model to assess the best predictors of change