

Paracelso nel XXI secolo: «Dosis sola facit, ut venenum non fit» Bologna 11-12 Febbraio 2020 Savoia Regency Hotel

Tossicologia perinatale: lo stato dell'arte

Barbara Viviani Dipartimento di Scienze Farmacologiche e Biomolecolari Università degli Studi di Milano

barbara.viviani@unimi.it

Paracelso nel XXI secolo: «Dosis sola facit, ut venenum non fit» BOLOGNA 11-12 Febbraio 2020 Savoia Regency Hotel

11.00-14.00	CORSO PRE-CONGRESSUALE: TOSSICOLOGIA PERINATALE Moderatore: Guido Mannaioni (Firenze)
11.00-11.30	Introduzione Barbara Viviani (Milano)
11.30-12.00	Epilessia Alessandra Pistelli (Firenze)
12.00-12.30	La gestione della paziente con disturbo da uso di sostanze in gravidanza e allattamento <i>Lorenzo Somaini (Biella)</i>
12.30-13.00	I farmaci psicoattivi in gravidanza e allattamento" Georgios Eleftheriou (Bergamo)
13.00-13.30	Esposizione a radiazioni ionizzanti a scopo diagnostico in gravidanza, outcome fetale e neonatale Andrea Missanelli (Firenze)
13.30-14.00	Depressione post partum Cinzia Niolu (Roma)

Developmental toxicology

Human critical period of development

Various organs develop at different times: different windows of vulnerability

THALIDOMIDE AND CONGENITAL ABNORMALITIES

SIR,—Congenital abnormalities are present in approximately 1.5% of babies. In recent months I have observed that the incidence of multiple severe abnormalities in babies delivered of women who were given the drug thalidomide (' Distaval ') during pregnancy, as an antiemetic or as a sedative, to be almost 20%.

These abnormalities are present in structures developed from mesenchyme—i.e., the bones and musculature of the gut. Bony development seems to be affected in a very striking manner, resulting in polydactyly, syndactyly, and failure of development of long bones (abnormally short femora and radii).

Have any of your readers seen similar abnormalities in babies delivered of women who have taken this drug during pregnancy?

Hurstville, New South Wales.

W. G. MCBRIDE.

*** In our issue of Dec. 2 we included a statement from the Distillers Company (Biochemicals) Ltd. referring to "reports from two overseas sources possibly associating thalidomide ('Distaval') with harmful effects on the fœtus in early pregnancy". Pending further investigation, the company decided to withdraw from the market all its preparations containing thalidomide.—ED.L.

The Lancet, 1961

Thalidomide (1961)

Minamata disease (1956): Methylmercury

Birth does not represent the end of any developmental

processes

System	General Considerations	Neonate (< 1 mths)	1 st Solid Food (~ 6 mths)	Weaning Toddler (~ 2 years)	Puberty (~ 11-15 years)	Adulthood (> 18 years)
Integument	 Critical neonatal function (barrier, water and thermoregulation, conductance, sensation) then progressive surface acidification, local microbiome and immune function 					
CV	 Critical neonatal physiologic transitions (pulmonary and systemic vascular resistance) Adaptive myocardial and vascular changes Progressive increase in ion channels. 					
GI	 Functional at birth, with adaptations especially over first year to accommodate shift in diet/complexity and populate microbiome 					
Renal	 Nephrogenesis complete at term birth Progressive increase in GFR and renal function over first year 					
Hepato- biliary	 Structurally well developed at birth Progressive increase in metabolic functionality, especially over first 6 months to 1 year of age 					
Pulmonary	Increased alveolization and surface area over first year					
Immune	 Progressive population of secondary immune tissues and development of memory as a function of time and environment 					
Endocrine	 Most glands are well developed at birth and critical for growth Zona reticularis of adrenal cortex and gonads undergo expansion in late childhood/early puberty 					
Repro- ductive	 Testes descended at birth, populated by germ cells, Sertoli cells and Leydig cells 'Mini puberty' at 2 to 4 months of age, adrenarche in late childhood Subsequent reproductive changes occur at onset of puberty and continue until adulthood 					
Nervous	 Defined sequential and progressive development into adulthood Maximum neuron count and brain:body weight at birth, with postnatal apoptosis, pruning and migration Myelin and glia present at birth Neurotransmitter and conduction systems mature at variable rates (ie: opiate receptors/metabolism, GABA, serotonin & noradrenalin differ) 					
Skeletal	 Growth plates present at birth most rapid postnatal growth occurs prior to age of 4 years, with slower growth through childhood primarily mediated by GH and TH pubertal growth spurt driven by sex hormones growth plates close during adolescence/early adulthood 					

ICH guideling S11 on penclinical cafety testing in support of development of paediatric medicines	
Ich guidenne SII on nonchinical safety testing in support of development of paediatric medicines	
EMA/CHMP/ICH/616110/2018	

Major period of functional and structural growth and development
Completion of structural development; active period of growth and/or functional maturation
Slow continued growth or refinement of function; also can reflect a period of relative inactivity, as in prepubertal reproductive tissues
Structurally and functionally fully mature

The timeline of development processes in the nervous system

Knuesel, Nat. Rev. Neurol, 2014

Various part of the brain develop at different times: *different windows of vulnerability* Birth does not represent the end of any developmental processes

Developmental Origins of Health and Disease (DOHaD)

Sensitive time windows for exposure to neurotoxicants and susceptibility to neurodevelopmental disorders

Heyer and Meredith, 2017

Key Weight of Evidence factors to be considered in determining if

nonclinical studies are warranted

ICH guideline S11 on nonclinical safety testing in support of development of paediatric medicines EMA/CHMP/ICH/616110/2018

Factors favouring toxicants exposure in developing organisms

- 1. Some lipofilic substances are shown to accumulate in maternal adipose tissue and breast milk and can be transmitted by breast feeding (DDT)
- 2. Many substances easily cross the BBB (MeHg-methylmercuric-cysteinyl complexes)
- 3. A greater energy demand then adults due to development, thus relative to b.w., they breath air more rapidly and ingest a higher proportion of water, fruit, vegetables in their diet than adults
- 4. Natural behaviour and activity, in and outdoor crawling, sticking objects or soil to their mouths

Comparison of Rat and Human ontogeny

Dose-response for critical effect To establish a dose without adverse effect

NOAEL: No Observed Adverse Effect Level is the highest concentration or amount of an agent, found by study or observation that causes no detectable, usually adverse (or toxic?) alteration in morphology, functional capacity, growth, development or lifespan of the target Animal based toxicological studies Quantification of adverse health effects

ADI: Admissible Daily Intake represents the amount of a food additive, a pesticide or a veterinary drug residue, expressed on a body weight basis, that can be ingested daily over a lifetime without appreciable health risk.

Dose-response for critical effect To establish a dose without adverse effect

Conclusions

NOAEL, ADI, TWI: allows to adopt preventive measure

The Seventh Environment Action Programme adopted by Decision No 1386/2013/EU of the European Parliament and of the Council (3) establishes the longterm objective of a non-toxic environment and, for that purpose, **stipulates that action is needed to ensure the minimisation of significant adverse effects of chemicals on human health** and the environment by 2020 (Official Journal of the European Union- 24.5.2017-*Legislative act*)

Dose-response for critical effect: the lead (Pb) case

