∽<u>₭₽</u>♥;\$\$ ● ☆₽♥;\$\$ ● ☆₽♥;\$\$ ● ☆₽♥;\$\$ ● ☆₽♥;\$\$ ● ☆₽♥;\$\$ ● ☆₽♥;\$\$ ● ☆₽♥;\$\$

Paracelso nel XXI secolo: «Dosis sola facit, ut venenum non fit» Savoia Reg

Inquinanti Organici Persistenti

Contaminanti organici persistenti di interesse emergente per la salute umana

G. Scortichini, T. Tavoloni, A. Stramenga, T. Stecconi, M. Giannotti, A. Piersanti

Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche

Polychlorinated- dioxins/furans/biphenyls EU strategy for PCDD/Fs and PCBs

Paracelso nel XXI secolo: 11-«Dosis sola facit, ut venenum non fit»

Reduction of PCDD/Fs and PCBs in the environment

Congresso

- a) Hazard identification, risk assessment, risk management, research communication to the public, communication with third countries (short- to medium-term)
- b) Data collection, monitoring and surveillance, identification of measures (long-term)

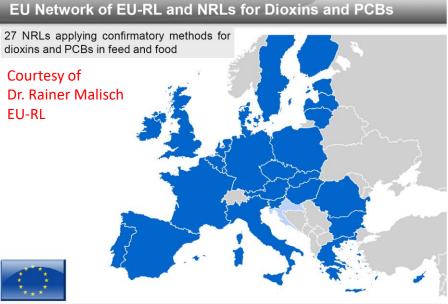
Reduction of PCDD/Fs and PCBs in feed an food

- a) Maximum levels (strict but feasible): if exceeded, feed or food not to be placed on the market
- b) Action levels (early warning of higher than desirable levels): if exceeded, take measures to identify and eliminate the source

Polychlorinated- dioxins/furans/biphenyls

Maximum/Action Levels

Methods of sampling and analysis



BOLOGNA Paracelso nel XXI secolo: «Dosis sola facit, ut venenum non fit» Bologna 11-12 Febbraio 2020 Savoia Regency Horel

Polychlorinated- dioxins/furans/biphenyls

EU Laboratory Network

EU-RL tasks

- Technical support to EC
- Workshops with NRLs
- Proficiency tests programme
- Core working groups
- Revision of EU legislation
- Analytical criteria definition
- Measurement uncertainty estimation
- Congener profiles database

Polychlorinated- dioxins/furans/biphenyls

Data collection 2013-2016 in Italy

Origin	Fruit and vegetables	Olive Oil	Eggs	Meat	Milk	Sheep Liver	Farmed Fish	Wild Fish	Total
North-East		2	169	514	129	11	98		923
North-West		3	123	308	193	7	11		645
Centre		17	47	63	62		46		235
South and Islands	224	58	50	102	196		66		696
Mediterranean Sea								160	160
Total	224	80	389	987	580	18	221	160	2659

SOURCE: Official controls (National Residue Plan, Regional Control Plans) – Research (Marine Fish Project)

Polychlorinated- dioxins/furans/biphenyls

Contamination levels (1)

Upper-bound values, pg WHO-TEQ/g (fat basis for eggs, meat and milk, wet weight for fish, liver, vegetables and fruits)

Food category	PCD Mean	D/Fs Median	DL-PCBs Mean Median		an PCDD/Fs + DL-Po Mean Media	
Eggs (n=389)	0.282	0.190	0.465	0.150	0.747	0.360
Fish (n=381)	0.104	0.050	0.577	0.217	0.682	0.307
Vegetables and Fruits (n=224)	0.009	0.005	0.012	0.005	0.021	0.011
Meat (n=800)	0.199	0.170	0.373	0.239	0.572	0.410
Milk (n=579)	0.249	0.210	0.687	0.420	0.936	0.640
Olive Oil (n=80)	0.047	0.040	0.053	0.040	0.100	0.081
Sheep Liver (n=18)	0.481	0.465	0.402	0.335	0.883	0.845

Paracelso nel XXI secolo: Bologna 11-12 Febbraio 2020 «Dosis sola facit, ut venenum non fit» Savoia Regency Hotel

Polychlorinated- dioxins/furans/biphenyls

Contamination levels (2)

Comparison with data from EFSA 2012 (upper-bound values, pg WHO-TEQ/g fat for eggs, meat and milk, wet weight for fish).

	PCDD/Fs + DL-PCBs						
Feed asta			aly 2013-202	16	EFSA 2012 (1999-2010)		
Food cate	gory	Mean	Median	P95	Mean	Median	P95
Eggs		0.75	0.36	2.07	1.62	0.61	5.16
	Bovine	0.79	0.64	1.85	2.34	1.68	5.97
Maat	Poultry	0.51	0.37	1.13	0.99	0.56	2.79
Meat	Swine	0.33	0.32	0.54	0.31	0.11	0.79
	Sheep	0.73	0.53	2.06	1.24	0.84	3.18
	Bovine	1.04	0.77	2.66			
N 4:11-	Sheep	0.93	0.46	2.56	1.01*	0 77*	4.26*
Milk	Buffalo	0.54	0.45	1.11	1.91* * Mill	0.77* k and milk p	4.36*
	Goat	1.53	0.64	3.90	IVIII	k and mik p	Toutets
Fish	Trout	0.22	0.17	0.55	1.05	0.94	2.01

Paracelso nel XXI secolo: 11-12 Febbraio 2020 «Dosis sola facit, ut venenum non fit» Savoja Regency Hotel

BOLOGNA

Polychlorinated- dioxins/furans/biphenyls

Dietary exposure estimation

Based on Food Consumption Database INRAN (2006), pg WHO-TEQ/kg b.w. per day

Health Reference Levels

EFSA, 2018: tolerable weekly intake (TWI) 2 pg WHO-TEQ/kg b.w. for PCDD/Fs + DL-PCBs

US EPA, 2012: oral reference dose (RfD) 0.7 pg WHO-TEQ/kg b.w. per day for PCDD/Fs

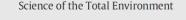
JECFA, 2001: provisional tolerable monthly intake (PTMI) 70 pg WHO-TEQ/kg b.w. for PCDD/Fs + DL-PCBs

SCF, 2001: tolerable weekly intake (TWI) 14 pg WHO-TEQ/kg b.w. for PCDD/Fs + DL-PCBs

EFSA. Journal 13(5) 2015, 16(11) 2018

Population group	Mean	Median	P75	P95		
PCDD/Fs + DL-PCBs						
Children	1.98	1.40	2.33	4.98		
Adolescents	1.16	0.82	1.36	2.90		
Adults	0.90	0.64	1.05	2.24		
	PCDD/Fs					
Children	0.62	0.44	0.62	1.66		
Adolescents	0.37	0.26	0.37	0.98		
Adults	0.28	0.20	0.28	0.75		
	D	L-PCBs				
Children	1.36	0.96	1.71	3.32		
Adolescents	0.79	0.56	0.99	1.92		
Adults	0.62	0.44	0.77	1.49		

Paracelso nel XXI secolo: «Dosis sola facit, ut venenum non fit» Bologna 11-12 Febbraio 2020 Savola Regency Hotel


Polychlorinated- dioxins/furans/biphenyls

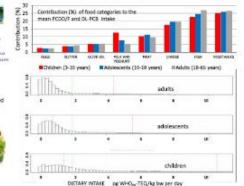
Dietary intake in Italy

For more details

Science of the Total Environment 627 (2018) 11-19 Contents lists available at ScienceDirect

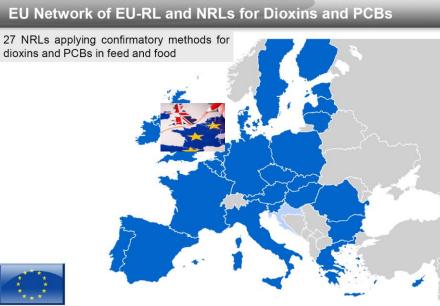
journal homepage: www.elsevier.com/locate/scitotenv

Intake estimates of dioxins and dioxin-like polychlorobiphenyls in the Italian general population from the 2013-2016 results of official monitoring plans in food


Gianfranco Diletti ^a, Giampiero Scortichini ^b, Maria Cesarina Abete ^c, Giovanni Binato ^d, Luca Candeloro ^a, Roberta Ceci^a, Giannina Chessa^e, Annamaria Conte^a, Alessandra Di Sandro^f, Mauro Esposito^g, Giorgio Fedrizzi^h, Vincenzo Ferrantelliⁱ, Enrica Ferretti^j, Simonetta Menotta^h, Valeria Nardelli^k, Bruno Neri¹, Arianna Piersanti^m, Francesca Roberti^f, Alessandro Ubaldi¹, Gianfranco Brambilla^{n,*}

^a Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, Campo Boario, 64100 Teramo, Italy

- ^b Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche, Via Gaetano Salvemini 1, 06126 Perugia, Italy ^c Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Via Bologna 148, 10154 Torino, Italy
- ^d Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università 10, 35020 Legnaro, Italy
- ^e Istituto Zooprofilattico Sperimentale della Sardegna, Via Duca degli Abruzzi 8, 07100 Sassari, Italy
- ^f Ministero della Salute, Viale Giorgio Ribotta 5, 00144 Roma, Italy
- ⁸ Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via della Salute 2,80055 Portici, Italy
- h Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Via Pietro Fiorini, 5, 40127 Bologna, Italy
- 1 Istituto Zooprofilattico Sperimentale della Sicilia, Via Gino Marinuzzi, 3, 90129 Palermo, Italy
- ¹ Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna. Via Antonio Bianchi 9, 25124 Brescia, Italy k Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Via Manfredonia, 20, 71 121 Foggia, Italy
- Istituto Zooprofilattico Sperimentale delle Regioni Lazio e Toscana, Via Appia Nuova, 1411, 00178 Roma, Italy
- m Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche, Via Cupa di Posatora, 3, 60131 Ancona, Italy
- ⁿ Istituto Superiore di sanità, Food Safety, Nutrition, and Veterinary Public Health Dept., Viale Regina Elena 299, 00161 Roma, Italy



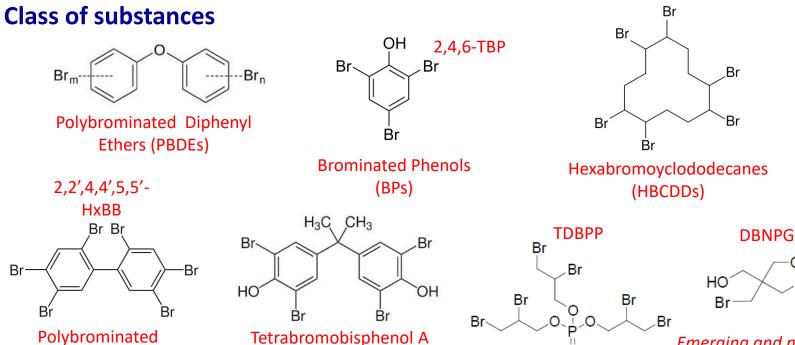
Polychlorinated- dioxins/furans/biphenyls

EU Laboratory Network

European Union Reference Laboratory of Dioxins and PCBs in Feed and Food

Since 2018 EU-RL for halogenated POPs in feed and food

Regulation (EU) 2018/192


EU-RL additional tasks

New substances

- Brominated Flame Retardants (BFRs)
- Per- Polyfluorinated Alkyl Substances (PFASs)
- Chlorinated Paraffins (CPs)

Biphenyls (PBBs)

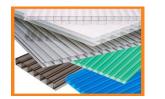
(TBBPA)

Emerging and novel BFRs

0

ΟН

Br



Congresso

Main uses

Approximately 311,000 tons used worldwide in 2005 (21% of FRs total consumption)

- □ Electronic devices (computers, TVs)
- Upholstery
- Carpets
- Textiles
- **Epoxy resins**

Polystyrene foams

Health effects

Toxicological data mainly available for PBDEs and HBCDDs with following critical endpoints

Paracelso nel XXI secolo: «Dosis sola facit, ut venenum non fit» Savola Regency Hotel

- □ Liver toxicity
- □ Endocrine system disruption
- Reproductive effects
- Developmental effects
- Neurobehavioural effects
- DNA damage (induction of reactive oxygen species)

hyroid Hormone Disruption as a iomarker of Exposure and Effect

Human exposure

Congresso

- Dietary exposure (main route)
 - ✓ Fish and fish products
 - ✓ Meat and meat products
 - ✓ Fat of animal and vegetable origin
 - ✓ Milk and milk products
 - ✓ Eggs and egg products
- □ Air (indoor and outdoor)

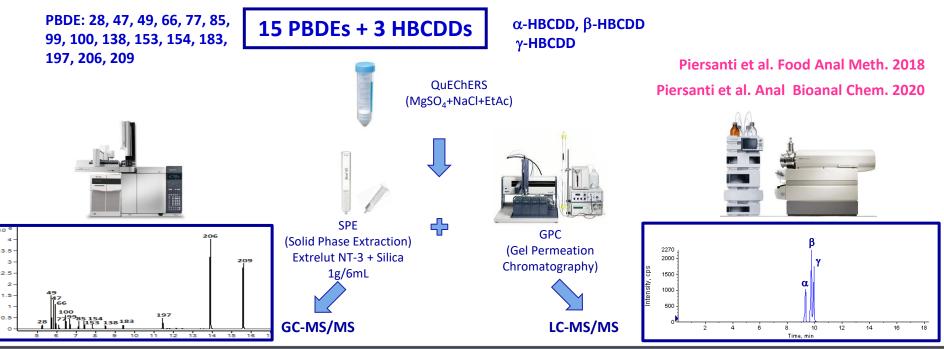
Dust

Health reference levels

US EPA: Reference Dose (RfD) at which no appreciable health risk expected during lifetime

Paracelso nel XXI secolo: 11-12 Febbraio 2020 «Dosis sola facit, ut venenum non fit» Savoia Regency Hotel

- □ 100 ng/kg b.w. per day for BDE-47 and BDE-99
- 200 ng/kg b.w. per day for BDE-153
- □ 3000 ng/kg b.w. per day for octaBDEs
- □ 7000 ng/kg b.w. per day for BDE-209



US EPA. Technical Fact Sheet. 2017

Analytical methods

Paracelso nel XXI secolo: 11-12 Febbraio 2020 «Dosis sola facit, ut venenum non fit» Savoja Begency Hotel

Brominated Flame Retardants

EU monitoring programme

Recommendation 2014/118/EU on the monitoring of the presence of BFRs in food.

Monitoring of BFRs in a wide range of food products reflecting consumers' habits with the aim of estimate human exposure (2014-2015).

PBDEs and HBCDDs in food samples

Samples tested in the period 2013-2019

Type of sample	N. of samples	Programme
Mussels	134	Research
Eggs	8	Regional control plan
Milk	10	Regional control plan
Cheese	21	Regional control plan
Meat and meat products	5	Regional control plan Research
Fish (marine)	44	Regional control plan Research
Fish/crustaceans (fresh water)	58	Research

Total

(n=134)

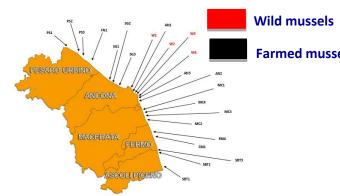
Paracelso nel XXI secolo: «Dosis sola facit, ut venenum non fit» Savoia Regency Hotel

11-12 Febbraio 2020

<10

<10

<10


<10

<10

Brominated Flame Retardants

PBDEs in mussels (1)

Monitoring of Mytilus galloprovinci 23 sampling points along Marche reg coastline (April-November 2013).

		P	BDE levels (pg/g, i	resh weight)	
	Туре	Congener	49 ^a	47	
ialis	Farmed	Mean	19	68	
	(n=106)	Median	19	68	
gion		SD	7	27	
		Min	<10	16	
		Max	37	146	
	Wild	Mean	39	92	
els	(n=28)	Median	39	96	
		SD	5	32	

Min

Max

Mean

Median

SD

Min

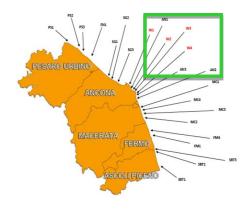
Max

PRDE lovals (ng/g frach woight)

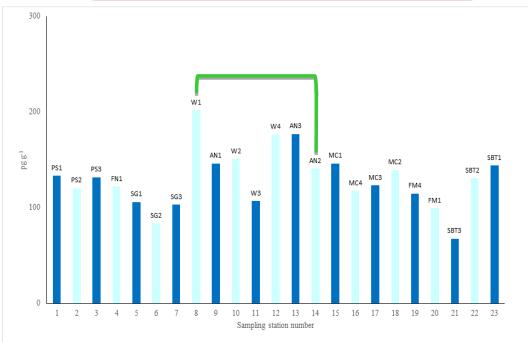
Piersanti et al. Mar. Poll. Bull. 2015

^a For PBDE-49 the number of considered results was 95 (93 farmed and 2 wild)

<10



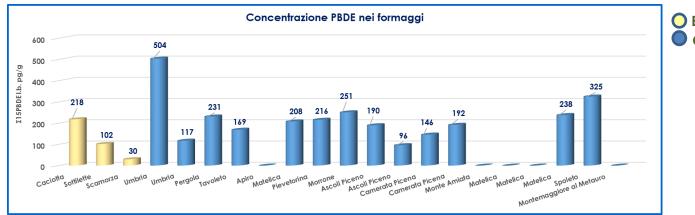
Paracelso nel XXI secolo: «Dosis sola facir, ut venenum non fit» Bologna 11-12 Febbraio 2020 Savoia Regency Horel


Brominated Flame Retardants

PBDEs in mussels (2)

PBDE levels recorded at the sampling points near the city of Ancona were higher than in the rest of coastline.

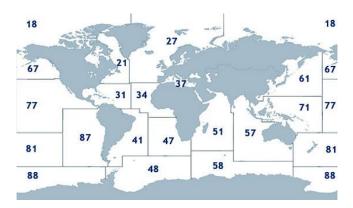
 Σ PBDEs (pg/g, fresh weight), mean lower bound values



PBDEs in cheese

PBDE levels in ovine milk cheese tended to be higher than that in bovine milk cheese.

Σ PBDEs (pg/g, fresh weight), mean lower bound values

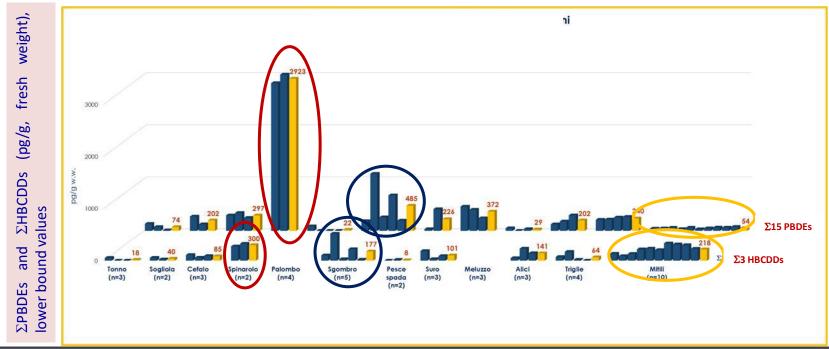

Bovine milk cheese
 Ovine milk cheese

Paracelso nel XXI secolo: «Dosis sola facit, ut venenum non fit»
BOLOGNA 11-12 Febbraio 2020 Savoia Regency Horel

Brominated Flame Retardants

PBDEs and HBCDDs in marine fish (1)

Piersanti et al. Anal Bioanal Chem. 2020


Spec	ies	N. of samples	Trophic level ^a	FAO fishing area	Lipid content (%)
Tuna	Thunnus alalunga	1	4.3	37	7.8 ^b
Tonia	Thunnus albacares	2	4.4	27	0.5 d
Sole	Solea solea	2	3.2	37	1.6 ^b
Grey mullet	Mugil cephalus	3	2.5	37	2.2 b
Spiny dogfish	Squalus acanthias	2	4.4	21	13.4 ^b
Smooth-hound	Mustelus mustelus	4	3.8	27	1.2 °
Mackerel	Scomber scombrus	5	3.6	27	4.1 ^b
Swordfish	Xiphias gladius	2	4.5	51	12.4 b
Atlantic horse mackerel	Trachurus trachurus	3	3.7	37	9.1 b
Cod	Merluccius merluccius	3	4.4	27	0.6 ^b
Anchovie	Engraulis encrasicolus	3	3.1	37	4.8 b
Red mullet	Mullus barbatus	4	3.1	37	3.5 b
Mussel	Mytilus galloprovincialis	10		37	2.6 ^b
° <u>http://www.fishbase.se</u>					
^b FAO/INFOODS Databases (AnFooD)	2.0) - http://www.fao.org/infoods/	/infoods/tables-a	nd-databases/ł	aoinfoods-databo	ases/it/

d USDA food composition database - https://ndb.nal.usda.gov/ndb/search/list

^c CREA food composition database - http://nut.entecra.it/646/tabelle_di_composizione_degli_alimenti.html

PBDEs and HBCDDs in marine fish (2)



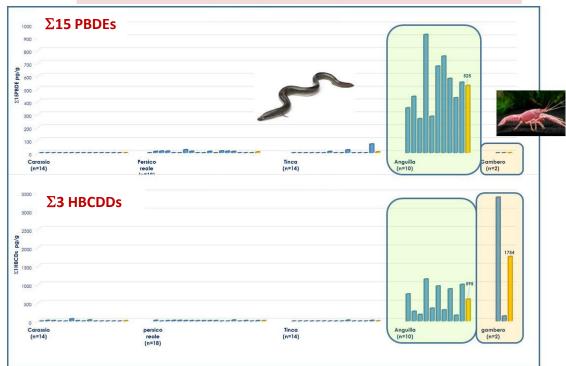
Paracelso nel XXI secolo: «Dosis sola facit, ut venenum non fit»
BOLOGNA 11-12 Febbraio 2020 Savola Regency Horel

Brominated Flame Retardants

PBDEs and HBCDDs in freshwater fish and crustaceans (1)

SAMPLING AREA	SPI	ECIES	SAM	IPLES (N°)	LABORATORY SAMPLES (N°)
	Carassius carassius	(Crucian Carps)	14	Female	14
.	Perca fluviatilis	(European perches)	18	8 Male 10 Female 11 Male	18
Trasimeno Lake (Central Italy)	Tinca tinca	(Tenches)	14	3 Female	14
	Anguilla anguilla	(Eels)	10	Female	10
	Procambarus clarkii	(Red Swamp Crayfishes)	20	10 Male 10 Female	2

Paracelso nel XXI secolo: «Dosis sola facit, ut venenum non fit» Bologna 11-12 Febbraio 2020 Savoia Regency Hotel


Brominated Flame Retardants

HBCDDs PBDEs and in freshwater fish and crustaceans (2)

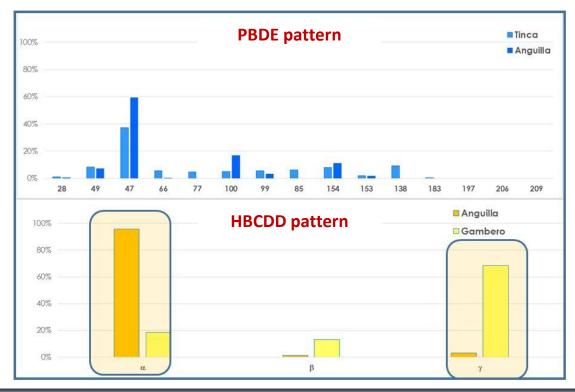
PBDEs and HBCDDs were more abundant in eels.

HBCDDs were higher than PBDEs in crayfish.

 Σ PBDEs and Σ HBCDDs (pg/g, fresh weight), lower bound values

Paracelso nel XXI secolo: «Dosis sola facir, ut venenum non fit» Bologna 11-12 Febbraio 2020 Savoia Regency Horel

BOLOGNA

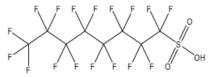

Brominated Flame Retardants

HBCDDs PBDEs and in freshwater fish and crustaceans (3)

PBDE contamination pattern in eels: 47 > 100 > 154 > 49 > 99.

 α -HBCDD was always the most abundant congener.

Only in red swamp crayfish γ - HBCDD was dominant.

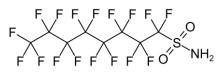

Paracelso nel XXI secolo: «Dosis sola facit, ut venenum non fit» Bologna 11-12 Febbraio 2020 Savoia Regency Hotel

BOLOGNA

Per-polyfluoroalkyl substances

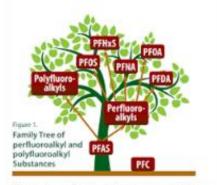
Class of substances (1)


Pefluorooctane sulfonic acid (PFOS)


Perfluoroalkyl sulfonic acids (PFSAs)

PFBS	Perfluorobutane sulfonic acid
PFPS	Perfluoropentane sulfonic acid
PFHxS	Perfluorohexane sulfonic acid
PFHpS	Perfluoroheptane sulfonic acid
PFOS	Perfluorooctane sulfonic acid
PFNS	Perfluorononane sulfonic acid
PFDS	Perfluorodecane sulfonic acid
PFDoS	Perfluorododecane sulfonic acid

Pefluorooctanoic acid (PFOA)


Pefluorooctane sulfonamide (PFOSA)

Perfluoroa	lkyl carboxylic acids (PFCAs)	
PFBA	Perfluorobutanoic acid	
PFPA	Perfluoropentanoic acid	
PFHxA	Perfluorohexanoic acid	
PFHpA	Perfluoroheptanoic acid	
PFOA	Perfluorooctanoic acid	
PFNA	Perfluorononanoic acid	
PFDA	Perfluorodecanoic acid	
PFUnDA	Perfluoroundecanoic acid	
PFDoDA	Perfluorododecanoic acid	
PFTrDA	Perfluorotridecanoic acid	
PFTeDA	Perfluorotetradecanoic acid	
PFHxDA	Perfluorohexadecanoic acid	
PFODA	Perfluorooctadecanoic acid	

PFASs

Per- polyfluoroalkyl substances Class of substances (2)

nzionale

Jġ

SITOX

Photo: Agency for Toxic Substances and Disease Registry

Perfluoroalkyl carboxylic acids (PFCAs) Perfluoroalkane sulfonic acids (PFSAs) Perfluoroalkyl acids (PFAAs) CnF2n+1R Perfluoroalkyl phosphonic acids (PFPAs) Perfluoroalkyl phosphinic acids (PFPIAs) Perfluoroalkane sulfonyl fluoride (PASF) PASF-Dased derivatives CnF2n+1SO2-R, R = NH, NHCH2CH2OH, etc. Nonpolymers FT-based derivatives Perfluoroalkyl iodides (PFAIs) _ Fluorotelomer iodoes (FTIs) _ CnF2n+1CH2CH2-R CnF2n+1I CnF2n+1CH2CH2I R = NH, NHCH2CH2OH, etc. - Per- and polyfluoroalkyl ethers (PFPEs)-based derivatives - Polyfluoroalkyl ether carboxylic acids Polytetrafluoroethylene (PTFE), Polyvinylidene fluoride (PVDF), Fluoropolymers — Fluorinated ethylene propylene (FEP), Perfluoroalkoxyl polymer (PFA), etc. Fluorinated (meth)acrylate polymers Polymers + Side-chain fluorinated polymers — Fluorinated urethane polymers Fluorinated oxetane polymers Perfluoropolyethers

OECD. Synthesis paper on Per- and Polyfluorinated Chemicals (PFCs). 2013

Per- and polyfluoroalkyl substances (PFASs)

BOLOGNA

Savoia Reaency Hotel

Paracelso nel XXI secolo: 11-12 Febbraio 2020

«Dosis sola facit, ut venenum non fit»

Per-polyfluoroalkyl substances

Main uses

Used in industrial and consumer products due to their dielectric properties, thermal and chemical stability, and low surface energy

- Protective coatings for textiles and carpets
- Paper coatings

Congresso

- Paints
- Cosmetics
- □ Insecticide formulations
- □ Wax, polishing agents
- □ Fire fighting foams

Health effects

Adverse effects derived from animal studies and human epidemiological studies

Paracelso nel XXI secolo: «Dosis sola facit, ut venenum non fit» Savola Regency Hotel

- □ Reproductive and developmental toxicity
- Neurobehavioral toxicity
- Immunotoxicity
- □ Kidney, liver and lung toxicity

Hypercholesterolemia

Carcinogenic effects

Thyroid hormone disruption

- Kan et al. Environ Int. 2017 EFSA. Journal 10(6) 2012

Per- polyfluoroalkyl substances

Human exposure

Congresso

Jġ

SITOX

- Dietary exposure (main route)
 - ✓ Fish and other seafood
 - Food grown in PFAS contaminated soil or water \checkmark
 - Contamination by food contact materials \checkmark
 - Contamination during food processing \checkmark
 - Drinking water \checkmark
- Indoor and outdoor air/aerosols and dust
- Consumer products treated with PFAS

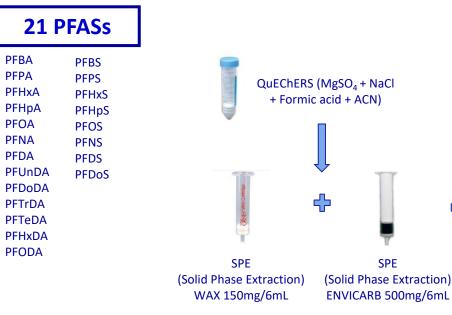
Health reference levels

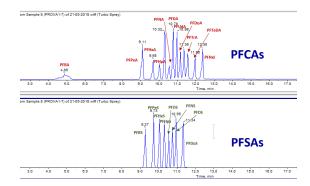
□ Tolerable daily intake (TDI), EFSA 2008

Paracelso nel XXI secolo:

«Dosis sola facit, ut venenum non fit»

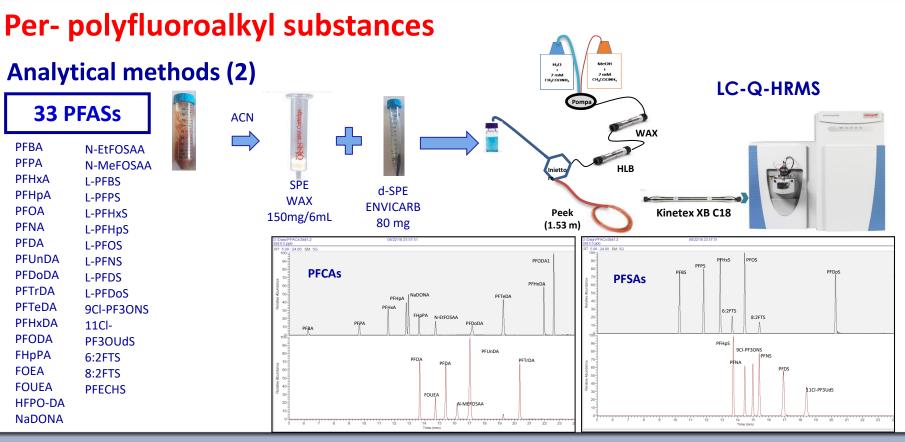
Febbraio 2020


- ✓ 150 ng/kg b.w. per day for PFOS
- 1500 ng/kg b.w. per day for PFOA \checkmark
- Oral reference doses (RfDs), U.S. EPA 2016
 - ✓ 20 ng/kg b.w. per day for PFOS and PFOA
- Tolerable weekly intake (TWI), EFSA 2018
 - 13 ng/kg b.w. per week for PFOS \checkmark
 - 6 ng/kg b.w. per week for PFOA \checkmark


Per-polyfluoroalkyl substances

Analytical methods (1)

SITOX



Paracelso nel XXI secolo: «Dosis sola facit, ut venenum non fit» BOLOGNA 11-12 Febbraio 2020 Savoia Regency Horel

<u>, x: 8</u> Q & O X: 8 Q

Paracelso nel XXI secolo: «Dosis sola facit, ut venenum non fit» sav

BOLOGNA 11-12 Febbraio 2020 Savoia Regency Hotel

Per-polyfluoroalkyl substances

EU monitoring programme (1)

Occurrence of **PFCAs** (mean values, µg/kg) Recommendation PFPA **PFHxA** PFHpA **PFOA** PFNA Food group 2010/161/EU on the lb lb ub lb ub ub lb ub lb ub monitoring of PFAS in 0.0087 0.0003 0.78 1.6 0.24 0.38 Meat and meat products 0.018 0.17 0.19 0.13 food. Fish and other seafood 0.0051 0.60 0.045 0.60 0.010 0.80 0.082 0.69 0.015 0.64 Vegetables and veg products 0.0016 0.10 0.0014 0.075 0.039 0.13 0.0007 0.088 ___ ___ Focus on PFOA in game Eggs and egg products 0.0020 0.0025 0.58 0.54 0.51 0.066 ___ ___ ___ ___ animals 0.0034 0.0035 Drinking water 0.0004 0.0022 0.001 0.0038 0.001 0.0027 0.000008 0.0017 PFDA **PFUnDA** PFDoDA **PFTrDA PFTeDA** Meat (mainly wild Food group lb ub lb ub lb ub lb ub lb ub boar): $0.28 - 76 \,\mu g/kg$ Meat and meat products 0.1496 0.28 0.0019 0.29 0.085 0.24 0.0004 0.21 0.00004 0.33 Edible offal (mainly wild Fish and other seafood 0.059 0.57 0.078 0.63 0.041 0.67 0.078 0.46 0.04 0.74 Vegetables and veg products boar liver): 0.0002 0.088 0.0038 0.082 ___ ___ ___ ___ ___ ___ $20 - 789 \,\mu g/kg$ Eggs and egg products 0.0004 0.59 0.0012 0.12 ___ ___ ___ ___ ___ ___ Drinking water ___ ___ ___ ___ ___ ___ ___ min – max. ub values

Ib: lower bound values; ub: upper bound values

EFSA. Journal 10(6) 2012

Paracelso nel XXI secolo: 11-12 Febbraio 2020 «Dosis sola facit, ut venenum non fit» Savoja Regency Hotel

Per- polyfluoroalkyl substances

EU monitoring programme (2)

Occurrence of **PFSAs** and **PFOSA** (mean values, µg/kg)

Recommendation **PFHpS** PFOS PFDS **PFOSA** PFBS PFHxS Food group 2010/161/EU on the lb ub lb ub lb ub lb ub lb ub lb ub 0.0008 0.0010 0.00001 0.0098 Meat and meat products 0.27 0.21 29.5 30 0.72 monitoring of PFAS in ___ ___ 0 Fish and other seafood 0.0024 0.49 1.99 2.4 0.0096 0.0052 1.8 1.1 ___ 0.23 0.37 ___ food. Vegetables and veg products 0.0002 0.11 0.0001 0.090 ___ ___ 0.020 0.12 0.0004 0.0079 ___ ___ Eggs and egg products 0.0001 0.52 0.034 0.74 ___ ___ ___ ___ ___ ___ ___ ___ Drinking water 0.0016 0.032 0.0007 0.21 0.0005 0.025 Ib: lower bound values; ub: upper bound values Meat (wild boar): $1.5 \,\mu g/kg \,(1.1 - 29 \,\mu g/kg)$ Focus on PFOS in game

animals and fish

Edible offal (mainly wild boar liver): 215 μg/kg (0.002 – 3480 μg/kg) Fish meat: 2.5 μ g/kg $(0.004 - 211 \,\mu g/kg)$ Mean (min – max), ub values

EFSA. Journal 10(6) 2012

Per-polyfluoroalkyl substances

EU monitoring programme (3)

Updated evaluation on the risks to human health related to the presence of PFOS and PFOA in food: based on 10,191 results for PFOS and 9,828 results for PFOA, collected in the period 2007-2015.

- PFOS (mean value, lower-bound)
 - ✓ Meat and meat products: 28.6 µg/kg
 - $\checkmark~$ Fish and fish products : 2.08 $\mu g/kg$
 - ✓ Liver of game mammals: 215 µg/kg

- □ PFOA (mean value, lower-bound)
 - ✓ Meat and meat products : 0.10 μ g/kg (offals excluded)
 - \checkmark Fish and fish products : 0.22 µg/kg
 - ✓ Liver of game mammals: 5.46 µg/kg

Per-polyfluoroalkyl substances

Drinking water

EU: proposal for a Directive on the quality of water intended for human consumption.

Parameter	Parametric value (µg/L)	Notes
PFASs	0.10	Each individual per- and polyfluoroalkyl substance (C _n F _{2n+1} -R)
PFASs - Total	0.50	Sum of per- and polyfluoroalkyl substances (C _n F _{2n+1} -R)

USA: health advisory levels in drinking water.

Parameter	Parametric value (ng/L)	Notes
PFOA	70	Individual or combined
PFOS	70	individual of combined

US EPA. Fact Sheet PFOA & PFOS Drinking Water Health Advisories, 2016

EU COM (2017) 753 final

ӄ<u>ӄ</u>҄҄҄ѧѿѻҡ҄҄ѧҝѿѻҡӼҝѿѻҡӼҝѿѻҡӼҝѿѻҡӼҝѿѻҡӼҝ

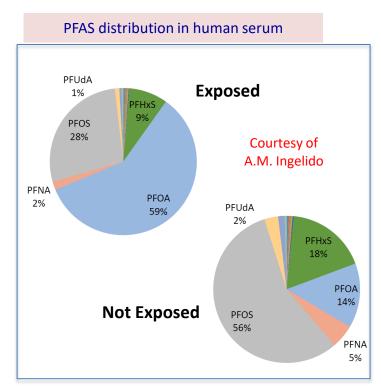
Per- polyfluoroalkyl substances PFAS contamination in Veneto region

PFASs in drinking water, contamination originated mainly from industrial emissions (chemical plant that has produced PFASs since 1968). The study involved 507 subjects, 257 in areas under impact (E), 250 in areas at presumed background exposure (NE), sampling July 2015 – April 2016.

PFOA levels in human serum

Congresso

ionale


۶ä

E (total): median 13.77 ng/g

E (ULSS 5 sub-area): median 74.21 ng/g

NE: median 1.64 ng/g

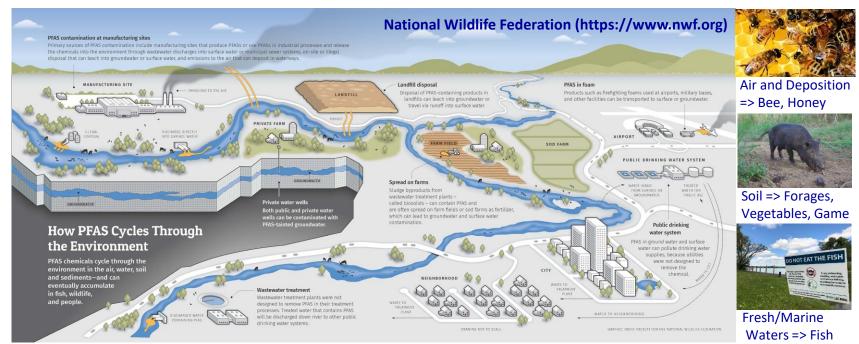
PFOA health-related guidance value 2 ng/mL in blood plasma (German Human Biomonitoring Commission)

Paracelso nel XXI secolo: 11-12 Febbraio 2020

«Dosis sola facit, ut venenum non fit» Savoja Regency Hotel

Ingelido et al. Environ Int. 2018

Paracelso nel XXI secolo: «Dosis sola facit, ut venenum non fit»
BOLOGNA 11-12 Febbraio 2020 Savoia Regency Horel


Per-polyfluoroalkyl substances

Cycles through the environment

Congresso

nzionale cietà Italiana di Tossicologia

SITOX

Paracelso nel XXI secolo: «Dosis sola facit, ut venenum non fit» Bologna 11-12 Febbraio 2020 Savoia Regency Horel

BOLOGNA

Persistent Organic Pollutants

UN 2030 Agenda for Sustainable Development

The impact of POPs

- 1) Reduced income for farmers 2) Reduced production of safe food
- 3) Human exposure higher than **HBGVs**
- 6) Compromising water resource
- 8) Reduced economy growth
- 12) Soil consumption
- 14) Compromising fish resource
- 15) Environmental damage in agricultural areas

Paracelso nel XXI secolo: 11-12 Febbraio 2020 «Dosis sola facit, ut venenum non fit» Savoja Regency Hote

Conclusions

- Monitoring programmes of POPs in food and feed is crucial to:
 - evaluate time trends and effectiveness of measures taken to reduce or eliminate their release into the environment;
 - establish new maximum levels for certain substances and re-evaluate the limits in force;
 - discover new contamination incidents. •
- Need for analytical methods with high sensitivity in order to quantify POPs at the lowest possible levels.
- Evaluation of dietary exposure of new substances and its relevance to human health based on updated toxicological data.
- Definition of priority substances for future monitoring programmes.
- Re-evaluation and harmonisation of health-based guidance values.

Congresso

Paracelso nel XXI secolo: «Dosis sola facit, ut venenum non fit» Bologna 11-12 Febbraio 2020 Savoia Regency Horel

Grazie per l'attenzione

Acknowledgements

Gianfranco Brambilla, ISS, Roma, Gianfranco Diletti, IZSAM, Teramo Anna Maria Ingelido, ISS, Roma, Roberta Galarini, IZSUM, Perugia Rainer Malisch, EURL, Freiburg

