A summary of all studies considered for the mammalian toxicology, including the Study ID Matrix is outlined in the following table. ## Outline of dataset considered for mammalian toxicology assessment: | Type of toxicity | Study type | Study
ID
Matrix | |----------------------|--|-----------------------| | Repeated | Repeated dose 90-day oral (feeding) toxicity study in rat | 1 | | dose toxicity | Repeated dose 90-day oral (feeding) toxicity study in rat | 2 | | studies in | Combined chronic toxicity/carcinogenicity oral (feeding) study in rat | 3 | | mammals | One-year interim sacrifice | 3a | | | Final sacrifice | <i>3b</i> | | | Repeated dose 90-day oral (feeding) toxicity study in mouse | 4 | | | Carcinogenicity oral (feeding) study in mouse | 5 | | | Final sacrifice | 5a | | | Mechanistic part of the study | 5b | | | Repeated dose 90-day oral (feeding) toxicity study in dog | 6 | | | Repeated dose 1-year oral (feeding) toxicity study in dog Two generation reproduction and (feeding) toxicity test in ret | 7
8 | | | Two-generation reproduction oral (feeding) toxicity test in rat Prenatal developmental toxicity oral (gavage) study in rat | 9 | | | Prenatal developmental toxicity oral (gavage) study in rabbit | 10 | | | Repeated dose 90-day oral (feeding) neurotoxicity study in rat | 23 | | | 28-day oral (gavage) study in male rat (mechanistic study - HLR 6-96) | 11 | | | 14-day oral (gavage and feeding) TK study in intact male rat (mechanistic study - | 12 | | | Report No 49393) | 12 | | | 15-day oral (gavage) study in intact male rat (mechanistic study - Report No 50232) | 20 | | | Without hCG challenge | 20a | | | With hCG challenge | 20b | | | 2-week oral (gavage) study in male rat (mechanistic study - HLR 575-93) | 21 | | | Without hCG challenge | 21a | | | With hCG challenge | 21b | | | Hormone analysis in the serum of male rats treated for 1-y (carcinogenicity study) | 21e | | In vitro mechanistic | <i>In vitro</i> stably transfected human androgen receptor transcriptional activation assays (Report No 50112) | 13 | | | <i>In vitro</i> stably transfected human estrogen receptor-α transcriptional activation assays (Report No 49230) | 14 | | | In vitro dopamine D2 receptor binding assay (DuPont-49680 Rev 1) | 15 | | | In vitro steroidogenesis assay (DuPont-49227) | 16 | | | <i>In vitro</i> hepatic microsome aromatase assay (DuPont-12095) | 17 | | | In vitro aromatase activity assays (Report No 47677) | 18 | | | Rat hepatic microsomes | 18a | | | Rat ovary homogenate | 18b | | | In vitro aromatase inhibition using human recombinant microsomes (DuPont-48651) 15-day oral (gavage) study in intact male rat (mechanistic study - Report No 50232) | 19 | | | Aromatase activity in microsomes prepared from treated rats | 20
20a | | | In vitro metabolism of testosterone in microsomes prepared from treated rats | 20c
20d | | | 2-week oral (gavage) study in male rat (mechanistic study - HLR 575-93) | 21 | | | Aromatase activity in microsomes prepared from treated rats | 21c | | | In vitro hepatic aromatase activity in C8-induced microsomes | 21d | | | In vitro hormonal synthesis in isolated and cultures Leydig cells from treated males | 21f | | | Combination effects of (tri)azole fungicides on hormone production and xenobiotic metabolism in a human placental cell line (Rieke, S <i>et al.</i> , 2014) | 22 | | | In vitro ToxCast Androgen (ATG_AR_TRANS_up, AR agonistic activity) | 29 | | | m rate Tokenstringtogen (1110_111_11in_up, the agoinsue activity) | | | | In vitro ToxCast Estrogen (ATG_ERE_CIS_up_FRa agonistic activity) | 30 | | | In vitro ToxCast Estrogen (ATG_ERE_CIS_up, ERa agonistic activity) In vitro ToxCast Estrogen (ATG_ERa_TRANS_up_ERa agonistic activity) | 30 | | | In vitro ToxCast Estrogen (ATG_ERE_CIS_up, ERa agonistic activity) In vitro ToxCast Estrogen (ATG_ERa_TRANS_up, ERa agonistic activity) In vitro ToxCast Thyroid (ATG_THRa1_TRANS_up, TRa transactivation) | 30
31
32 | In silico analysis: QSAR analysis indicates the active substance can interact with the sulfonylurea receptors ### ED assessment for humans ## 2.1 - ED assessment for T-modality # 2.1.1- Have T-mediated parameters been sufficiently investigated? | | Answer | |-----------------------|---| | T-mediated parameters | List of available studies in which thyroid adversity (histopathology and/or weight) is addressed: | | | OECD TG 408 - ID: 1#, 2#, 4# | | | OECD TG 409 - ID: 6 | | | OECD TG 452 - ID: 7 | | | OECD TG 453 - ID: 3# | | | OECD TG 451 - ID: 5# | | | | | | | $[\]hbox{\it\#} \ Thyroid\ weight\ not\ measured}.$ | Effect target | Species | Duration
of
exposure | Duration
unit | Route of administration | Lowest
Effect
dose | Dose unit | Effect
direction | Observed effect (positive and negative) | Assessment of each line of evidence | Assessment on the line of evidence | |-------------------------|-----------------------------------|----------------------------|------------------|-----------------------------------|--------------------------|-----------|---------------------|--|-------------------------------------|------------------------------------| | Thyroid receptor | Human liver
cell line
HepG2 | 24 | Hours | Uptake from the medium (in vitro) | | | No effect | Negative for TR
agonist
(ATG_THRa1_TR
ANS_up) | | | | | rat | 90 | Days | Oral | | ppm | No effect | | | | | | rat | 90 | Days | Oral | | ppm | No effect | | 1 | | | | mouse | 90 | Days | Oral | | ppm | No effect | | 1 | | | Thyroid | dog | 90 | Days | Oral | | ppm | No effect | | 1 | | | histopathology | dog | 1 | Years | Oral | | ppm | No effect | | • | | | | rat | 12 | Months | Oral | | ppm | No effect | | 1 | | | | rat | 22 | Months | Oral | | ppm | No effect | | • | | | | mouse | 18 | Months | Oral | | ppm | No effect | | • | | | Thyroid weight | dog | 90 | Days | Oral | | ppm | No effect | | • | | | 1,1.0.2 2 0 . | dog | 1 | Years | Oral | | ppm | No effect | | 1 | | | | rat | 90 | Days | Oral | | ppm | No effect | | | | | | rat | 90 | Days | Oral | | ppm | No effect | | 1 | | | | mouse | 90 | Days | Oral | | ppm | No effect | | 1 | | | Adrenals | dog | 90 | Days | Oral | | ppm | No effect | | 1 | | | histopathology | dog | 1 | Years | Oral | | ppm | No effect | | • | | | | rat | 12 | Months | Oral | | ppm | No effect | | 1 | | | | rat | 22 | Months | Oral | | ppm | No effect | | 1 | | | | mouse | 18 | Months | Oral | | ppm | No effect | | • | | | | rat | 90 | Days | Oral | | ppm | No effect | | 1 | | | | dog | 90 | Days | Oral | | ppm | No effect | | 1 | | | Adrenals weight | dog | 1 | Years | Oral | | ppm | No effect | | 1 | | | Adrendis Tele | rat | 12 | Months | Oral | | ppm | No effect | | 1 | | | | rat | 22 | Months | Oral | | ppm | No effect | | 1 | | | | mouse | 18 | Months | Oral | | ppm | No effect | | 1 | | | | rat | 90 | Days | Oral | | ppm | No effect | | | | | | rat | 90 | Days | Oral | | ppm | No effect | | 1 | | | Brain
histopathology | mouse | 90 | Days | Oral | | ppm | No effect | | 1 | | | examination | dog | 90 | Days | Oral | | ppm | No effect | | 1 | | | | dog | 1 | Years | Oral | | ppm | No effect | | 1 | | | | rat | 90 | Days | Oral | | ppm | No effect | | 1 | | | | <u></u> | | .1 | ·L | | .1 | | .1 | | | | Effect target | Species | Duration
of
exposure | Duration
unit | Route of administration | Effect
dose | Dose unit | Effect
direction | Observed effect (positive and negative) | Assessment of each line of evidence | Assessment on th | |------------------------|---------|----------------------------|------------------|-------------------------|----------------|--------------|---------------------|---|-------------------------------------|------------------| | | rat | 12 | Months | Oral | | ppm | No effect | | | | | | rat | 22 | Months | Oral | | ppm | No effect | | | | | | mouse | 18 | Months | Oral | | ppm | No effect | 1 | | | | | rat | 90 | Days | Oral | 10000 | ppm | Increase | Mean relative brain weight | | | | | rat | 90 | Days | Oral | 2000 | ppm | Increase | Mean relative
brain weight | | | | | rat | 90 | Days | Oral | 2000 | ppm | Decrease | Mean absolute brain weight | | | | | mouse | 90 | Days | Oral | | ppm | No effect | | | | | Brain weight | dog | 90 | Days | Oral | | ppm | No effect | | | | | 51 a 1. 2.g | dog | 1 | Years | Oral | | ppm | No effect | 1 | | | | | rat | 90 | Days | Oral | 1500 | ppm | Increase | Mean relative brain weight | | | | | rat | 12 | Months | Oral | 1500 | ppm | Increase | Mean relative brain weight | | | | | rat | 22 | Months | Oral | 1500 | ppm | Increase | Mean relative
brain weight | | | | | mouse | 18 | Months | Oral | | ppm | No effect | | | | | Fertility
(mammals) | rat | 131 | Days | Oral | | ppm | No effect | | | | | | rat | 131 | Days | Oral | | ppm | No effect | | | 1 | | Litter size | rat | 22 | Days | Oral | | mg/kg bw/day | No effect | 1 | | | | | rabbit | 13 | Days | Oral | | mg/kg bw/day | No effect | | | | | Litter viability | rat | 131 | Days | Oral | | ppm | No effect | | | | | | rat | 131 | Days | Oral | 750 | ppm | Decrease | Pup weight (<10%) | | - | | | rat | 22 | Days | Oral | | mg/kg bw/day | No effect | | | | | Litter/pup
weight | rabbit | 13 | Days | Oral | 270 | mg/kg bw/day | Decrease | Decreased fetal
weight (no clear
relationship but
low nb of litters
in the HD
group) | | | | Number of | rat | 131 | Days | Oral | + | ppm | No effect | | | 1 | | implantations, | rat | 22 | Days | Oral | | mg/kg bw/day | No effect | † | | | | corpora
lutea | rabbit | 13 | Days | Oral | + | mg/kg bw/day | No effect | + | | | | Number of live births | rat | 131 | Days | Oral | | ppm | No effect | | | | | Effect target | Species | Duration
of
exposure | Duration
unit | Route of administration | Lowest
Effect
dose | Dose unit | Effect
direction | Observed effect (positive and negative) | Assessment of each line of evidence | Assessment on the line of evidence | |--|---------|----------------------------|------------------|-------------------------|--------------------------|--------------|---------------------|---|-------------------------------------|------------------------------------| | Numbers of | rat | 131 | Days | Oral | | ppm | No effect | | | | | embryonic or
foetal deaths
and viable | rat | 22 | Days | Oral | | mg/kg bw/day | No effect | | | | | foetuses | rabbit | 13 | Days | Oral | | mg/kg bw/day | No effect | | | | | | rat | 90 | Days | Oral | | ppm | No effect | | | | | | rat | 90 | Days | Oral | | ppm | No effect | | | | | | mouse | 90 | Days | Oral | | ppm | No effect | | | | | | dog | 90 | Days | Oral | | ppm | No effect | | | | | Pituitary | dog | 1 | Years | Oral | | ppm | No effect | | | | | histopathology | rat | 131 | Days | Oral | | ppm | No effect | | | | | | Rat | 15 | Days | Oral | | mg/kg bw/day | No effect | | | | | | rat | 12 | Months | Oral | | ppm | No effect | | | | | | rat | 22 | Months | Oral | | ppm | No effect | | | | | | mouse | 18 | Months | Oral | | ppm | No effect | | | | | Pituitary weight | Rat | 15 | Days | Oral | | mg/kg bw/day | No effect | No consistent
effect (no dose
relationship but
saturation of
the absorption) | | | | | Rat | 15 | Days | Oral | | mg/kg bw/day | No effect | | | | | | rat | 131 | Days | Oral | | ppm | No effect | | | | | Post | rat | 22 | Days | Oral | | mg/kg bw/day | No effect | | | | | implantation loss | rabbit | 13 | Days | Oral | 270 | mg/kg bw/day | Increase | Abortions: 8/16
at 270 mkd,
12/20 at 800
mkd | | | | Pre implantation loss | rat | 131 | Days | Oral | | ppm | No effect | | | | | Presence of
anomalies
(external,
visceral, skeletal | rat | 22 | Days | Oral | 350 | mg/kg bw/day | Increase | Variations -
unossified skulls
(350); slight
retardation
renal dev
(1000); partially
ossified
vertebra (1000);
Malf - incidence
of
external/skeleta
I, 4 fetuses from
4 litters, no
specific pattern
(1000) | | | | Effect target | Species | Duration
of
exposure | Duration
unit | Route of administration | Lowest
Effect
dose | Dose unit | Effect
direction | Observed effect (positive and negative) | Assessment of each line of evidence | Assessment on th line of evidence | |--------------------|---------|----------------------------|------------------|-------------------------|--------------------------|--------------|---------------------|---|-------------------------------------|-----------------------------------| | | rabbit | 13 | Days | Oral | | mg/kg bw/day | No effect | Insufficient number of litters in the 2 highest dose groups according to OECD guideline - may compromise assessment of teratogenicity | | | | Pup survival index | rat | 131 | Days | Oral | | ppm | No effect | | | | | | rat | 131 | Days | Oral | | ppm | No effect | | | | | Sex ratio | rat | 22 | Days | Oral | | mg/kg bw/day | No effect | | | | | | rabbit | 13 | Days | Oral | | mg/kg bw/day | No effect | | | | | Time to mating | rat | 131 | Days | Oral | | ppm | No effect | | | | | | rat | 90 | Days | Oral | 10000 | ppm | Increase | Mean relative
heart weight | | | | | rat | 90 | Days | Oral | | ppm | No effect | | | | | | mouse | 90 | Days | Oral | | ppm | No effect | | | | | Heart weight | dog | 1 | Years | Oral | | ppm | No effect | | | | | | rat | 12 | Months | Oral | | ppm | No effect | | | | | | rat | 22 | Months | Oral | | ppm | No effect | | | | | | mouse | 18 | Months | Oral | | ppm | No effect | | | | | | rat | 90 | Days | Oral | 10000 | ppm | Increase | Hemosiderosis:
pigment in prox
tubules | | | | | rat | 90 | Days | Oral | 2000 | ppm | Increase | Hemosiderosis:
pigment in prox
tubules | | | | Kidney | rat | 90 | Days | Oral | 15000 | ppm | Increase | Tubular
epithelial cell
atrophy | | | | histopathology | mouse | 90 | Days | Oral | | ppm | No effect | | | | | | dog | 90 | Days | Oral | | ppm | No effect | | | | | | dog | 1 | Years | Oral | | ppm | No effect | | | | | | rat | 12 | Months | Oral | | ppm | No effect | | | | | | rat | 22 | Months | Oral | | ppm | No effect | | | | | | mouse | 18 | Months | Oral | | ppm | No effect | | | | | Kidney weight | rat | 90 | Days | Oral | 10000 | ppm | Decrease | Mean abs
weight | | | | Effect target | Species | Duration
of
exposure | Duration
unit | Route of administration | Lowest
Effect
dose | Dose unit | Effect
direction | Observed effect (positive and negative) | Assessment of each line of evidence | Assessment on the line of evidence | |-------------------------|---------|----------------------------|------------------|-------------------------|--------------------------|--------------|---------------------|--|-------------------------------------|------------------------------------| | | rat | 90 | Days | Oral | 10000 | ppm | Increase | Mean rel weight | | | | | rat | 90 | Days | Oral | 2000 | ppm | Decrease | Mean absolute kidney weight | | | | | rat | 90 | Days | Oral | 10000 | ppm | Increase | Mean relative kidney weight | | | | | mouse | 90 | Days | Oral | | ppm | No effect | | | | | | dog | 90 | Days | Oral | | ppm | No effect | | | | | | dog | 1 | Years | Oral | | ppm | No effect | | | | | | rat | 12 | Months | Oral | 1500 | ppm | Decrease | Mean absolute kidney weight | | | | | rat | 22 | Months | Oral | 1500 | ppm | Decrease | Mean absolute kidney weight | | | | | mouse | 18 | Months | Oral | | ppm | No effect | | | | | | rat | 90 | Days | Oral | | ppm | No effect | | | | | | rat | 90 | Days | Oral | | ppm | No effect | | | | | | mouse | 90 | Days | Oral | 750 | ppm | Increase | Hepatocelluar
hypertrophy | | | | | dog | 90 | Days | Oral | 4000 | ppm | Increase | Bile stasis (f);
Pigmented
sinusoidal
macrophages
(m&f) | | | | | dog | 1 | Years | Oral | 3500 | ppm | Increase | Hepatocelluar
hypertrophy | | | | | Rat | 15 | Days | Oral | | mg/kg bw/day | No effect | | | | | | rat | 12 | Months | Oral | | ppm | No effect | | | | | Liver
histopathology | rat | 22 | Months | Oral | 750 | ppm | Decrease | Dec. incidence of periportal fatty change (m&f), eosinophilic & total foci of cellular alt (m), basophilic & total foci of cellular alt (f) | | | | | mouse | 18 | Months | Oral | 2500 | ppm | Increase | Hepatic foci of cellular alteration, presence of intrahepatocellu lar erythrocytes, pigment accumulation in Kupffer cells and individual hepatocellular necrosis. Hepatocellular | | | | Effect target | Species | Duration
of
exposure | Duration
unit | Route of administration | Lowest
Effect
dose | Dose unit | Effect
direction | Observed effect (positive and negative) | Assessment of each line of evidence | Assessment on the line of evidence | |----------------|---------|----------------------------|------------------|-------------------------|--------------------------|--------------|---------------------|---|-------------------------------------|------------------------------------| | | | | | | | | | adenomas. | Mean relative | | | | | rat | 90 | Days | Oral | 2000 | ppm | Increase | liver weight (NSS, 11%; | | | | | | | | | | | | >20% and in M at higher doses) | | | | | | | | | | | | Mean relative | | | | | rat | 90 | Days | Oral | 2000 | ppm | Increase | liver weight | | | | 1 | | 00 | | 0.11 | 750 | | | Mean absolute | | | | | mouse | 90 | Days | Oral | 750 | ppm | Increase | & relative liver weight | | | | | | | | | | | | Absolute and | | | | | dog | 90 | Days | Oral | 4000 | ppm | Increase | relative liver weight | | | | | | | | | | | | Mean absolute | | | | | dog | 1 | Years | Oral | 3500 | ppm | Increase | and relative | | | | | | | | | | | | liver weight | | | | Liver weight | Rat | 28 | Days | Oral | | mg/kg bw/day | No effect | | | | | | | | | | | | | No consistent effect (no dose | | | | | Rat | 15 | Days | Oral | | mg/kg bw/day | No effect | relationship but | | | | | | | | | | | | saturation of the absorption) | | | | | Rat | 15 | Days | Oral | | mg/kg bw/day | No effect | | | | | İ | Rat | 15 | Days | Oral | 1500 | mg/kg bw/day | Increase | Mean relative | | | | | | | , | | | | | liver weight | | | | İ | Rat | 15 | Days | Oral | 2000 | mg/kg bw/day | Decrease | Mean absolute liver weight | | | | | rat | 12 | Months | Oral | 1500 | nom | Increase | Mean relative | | | | | rat | 12 | IVIOITITIS | Oral | 1500 | ppm | Increase | liver weight | | | | | mouse | 18 | Months | Oral | 2500 | nnm | Increase | Absolute & relative liver | | | | | mouse | 10 | IVIOITIIS | Oral | 2300 | ppm | ilicrease | weight | | | | | rat | 90 | Days | Oral | | ppm | No effect | | | 1 | | İ | rat | 90 | Days | Oral | | ppm | No effect | | | | | Lung | mouse | 90 | Days | Oral | + | ppm | No
effect | | | | | histopathology | dog | 90 | Days | Oral | + | ppm | No effect | | | | | İ | rat | 12 | Months | Oral | 1 | ppm | No effect | 1 | | | | 1 | rat | 22 | Months | Oral | | ppm | No effect | | | | | | 1.00 | | 171011013 | 3141 | | Pp | 110 CHECK | | | | | Effect target | Species | Duration
of
exposure | Duration
unit | Route of administration | Lowest
Effect
dose | Dose unit | Effect
direction | Observed effect (positive and negative) | Assessment of each line of evidence | Assessment on the line of evidence | |------------------------------------|---------|----------------------------|------------------|-------------------------|--------------------------|-----------|---------------------|---|-------------------------------------|------------------------------------| | | mouse | 18 | Months | Oral | | ppm | No effect | | | | | | rat | 90 | Days | Oral | | ppm | No effect | | | | | | rat | 90 | Days | Oral | | ppm | No effect | | | | | | mouse | 90 | Days | Oral | | ppm | No effect | | | | | Pancreas | dog | 90 | Days | Oral | | ppm | No effect | | | | | histopathology | dog | 1 | Years | Oral | | ppm | No effect | | | | | | rat | 12 | Months | Oral | | ppm | No effect | | | | | | rat | 22 | Months | Oral | | ppm | No effect | | | | | | mouse | 18 | Months | Oral | | ppm | No effect | | | | | | rat | 90 | Days | Oral | | ppm | No effect | | | | | Peripheral nerve
histopathology | rat | 22 | Months | Oral | 1500 | ppm | Increase | Incidence and
severity of
myelin/axon
degeneration of
the sciatic nerve | | | | Spinal cord
histopathology | rat | 90 | Days | Oral | | ppm | No effect | | | | | Spleen
histopathology | rat | 90 | Days | Oral | 2000 | ppm | Increase | Extramedullary
hematopoiesis
(in M and F at
higher doses) | | | | шэторитогоду | rat | 12 | Months | Oral | | ppm | No effect | | | | | | rat | 22 | Months | Oral | | ppm | No effect | | | | | | rat | 90 | Days | Oral | 10000 | ppm | Increase | Mean relative spleen weight | | | | | rat | 90 | Days | Oral | 2000 | ppm | Increase | Mean relative spleen weight | | | | Spleen weight | mouse | 90 | Days | Oral | | ppm | No effect | | | | | | rat | 12 | Months | Oral | | ppm | No effect | | | | | | rat | 22 | Months | Oral | 1500 | ppm | Decrease | Mean absolute spleen weight | | | | | mouse | 18 | Months | Oral | | ppm | No effect | | | | | Body weight | rat | 90 | Days | Oral | 2000 | ppm | Decrease | Mean body
weight (7% in
M, 3% in F) &
body weight
gain (11% in M,
7% in F) | | | | | rat | 90 | Days | Oral | 2000 | ppm | Decrease | Mean body
weight (9% in
M, 16% in F) &
body weight
gain (16% in M, | | | | Effect target | Species | Duration
of
exposure | Duration
unit | Route of administration | Lowest
Effect
dose | Dose unit | Effect
direction | Observed effect (positive and negative) | Assessment of each line of evidence | Assessment on the line of evidence | |---------------|---------|----------------------------|------------------|-------------------------|--------------------------|--------------|---------------------|---|-------------------------------------|------------------------------------| | | | | | | | | | 40% in F) | | | | | | 00 | Davis | Oral | | | No effect | | | | | | mouse | 90 | Days | Oral | | ppm | No effect | | | | | | dog | 90 | Days | Oral | 8000 | ppm | Decrease | Mean body
weight (25% in
M, 15% in F) &
body weight
gain (83% in M,
57% in F) | | | | | dog | 1 | Years | Oral | 3500 | ppm | Decrease | Mean body
weight gain
(18% in M, 20%
in F) | | | | | rat | 131 | Days | Oral | 750 | ppm | Decrease | Mean body weight (5% in F0 M) & body weight gain (13% in F0 M, 14% in F0 F) during premating | | | | | rat | 131 | Days | Oral | 750 | ppm | Decrease | Mean body
weight in F0
females during
lactation (7%)
and gestation
(6%). | | | | | rat | 131 | Days | Oral | 750 | ppm | Decrease | Mean body
weight in F1
females during
pre-mating,
lact., gest. (7%)
and in M at
1500 ppm | | | | | rat | 22 | Days | Oral | 350 | mg/kg bw/day | Decrease | Body weight
loss GD7-9,
body weight
gain (GD7-17:
19% compared
to controls/30%
at 1000 mkd) | | | | | rabbit | 13 | Days | Oral | 90 | mg/kg bw/day | Decrease | Body weight
loss GD7-10,
body weight
gain (32%
compared to
controls
GD7-20) | | | | | Rat | 28 | Days | Oral | | mg/kg bw/day | No effect | | | | | | rat | 90 | Days | Oral | 750 | ppm | Decrease | Mean body
weight (10% in
F) & body
weight gain
(22% in F) - at | | | | Effect target | Species | Duration
of
exposure | Duration
unit | Route of administration | Lowest
Effect
dose | Dose unit | Effect
direction | Observed effect (positive and negative) | Assessment of each line of evidence | Assessment on the line of evidence | |---------------------------|---------|----------------------------|------------------|-------------------------|--------------------------|--------------|---------------------|--|-------------------------------------|------------------------------------| | | | | | | | | | 3000 ppm in M | | | | | | | | | | | | | | | | | Rat | 15 | Days | Oral | 500 | mg/kg bw/day | Decrease | Mean body
weight (7-15%
on D15) & body
weight gain
(64-115% D1-8,
24-68% D1-15) | | | | | Rat | 15 | Days | Oral | 2000 | mg/kg bw/day | Decrease | Mean body
weight (8% on
D15) & body
weight gain
(68% D1-8, 42%
D1-15) | | | | | Rat | 15 | Days | Oral | 1000 | mg/kg bw/day | Decrease | Mean body
weight (10% on
D15) & body
weight gain
(74% D1-15) | | | | | rat | 12 | Months | Oral | 750 | ррт | Decrease | Mean body
weight (7% in
M, 7% in F) &
body weight
gain (11% in M,
13% in F) | | | | | rat | 22 | Months | Oral | 1500 | ppm | Decrease | Mean body
weight (14% in
M, 15% in F) &
body weight
gain (20% in M,
23% in F) | | | | | mouse | 18 | Months | Oral | 7000 | ppm | Decrease | Mean body
weight gain
(11% in M, 16%
in F) | | | | | rat | 90 | Days | Oral | 2000 | ppm | Decrease | RBC count, Hb,
Ht | | | | | rat | 90 | Days | Oral | 10000 | ppm | Increase | MCV,
Reticulocytes | | | | | rat | 90 | Days | Oral | 10000 | ppm | Increase | Lymphocytosis | | | | Clinical
chemistry and | rat | 90 | Days | Oral | 2000 | ppm | Decrease | RBC count, Hb,
Ht | | | | haematology | rat | 90 | Days | Oral | 2000 | ppm | Increase | MCV,
Reticulocytes | | | | | dog | 90 | Days | Oral | 8000 | ppm | Decrease | RBC count, Hb,
Ht | | | | | dog | 90 | Days | Oral | 8000 | ppm | Increase | MCV,
Reticulocytes;
Hypercellularity
of sternal,
femoral BM | | | | | | | | | | | | | | | | Effect target | Species | Duration
of
exposure | Duration
unit | Route of administration | Lowest
Effect
dose | Dose unit | Effect
direction | Observed effect (positive and negative) | Assessment of each line of evidence | Assessment on the line of evidence | |---------------------|---------|----------------------------|------------------|-------------------------|--------------------------|--------------|---------------------|---|-------------------------------------|------------------------------------| | | | | | | | | | (regenarative anemia) | | | | | dog | 90 | Days | Oral | 4000 | ppm | Increase | ALAT, ASAT (and
ALP at 8000
ppm) | | | | | dog | 1 | Years | Oral | 3500 | ppm | Decrease | RBC count, Hb,
Ht | | | | | dog | 1 | Years | Oral | 3500 | ppm | Increase | ALP | | | | | rat | 12 | Months | Oral | 750 | ppm | Decrease | RBC count, Hb,
Ht | | | | | rat | 90 | Days | Oral | 2000 | ppm | Decrease | Food efficiency | | | | | rat | 90 | Days | Oral | 2000 | ppm | Decrease | Food efficiency
& food
consumption | | | | | mouse | 90 | Days | Oral | | ppm | No effect | | | | | | rat | 131 | Days | Oral | 750 | ppm | Decrease | Food
consumption
and/or food
efficiency | | | | | rat | 131 | Days | Oral | 750 | ppm | Decrease | Food
consumption
during
premating | | | | Food
consumption | rat | 22 | Days | Oral | 350 | mg/kg bw/day | Decrease | Food
consumption -
days 7-9G,
9-11G;
increased days
17-22G | | | | | rabbit | 13 | Days | Oral | 270 | mg/kg bw/day | Decrease | | | | | | Rat | 28 | Days | Oral | | mg/kg bw/day | No effect | | | | | | rat | 90 | Days | Oral | 750 | ppm | Decrease | | | | | | Rat | 15 | Days | Oral | 500 | mg/kg bw/day | Decrease | Food
consumption
and/or food
efficiency | | | | | Rat | 15 | Days | Oral | 2000 | mg/kg bw/day | Decrease | Food
consumption
and/or food
efficiency | | | | | Rat | 15 | Days | Oral | 1000 | mg/kg bw/day | Decrease | | | | | | mouse | 18 | Months | Oral | | ppm | No effect | Food
consumption &
efficiency | | | | Mortality | rat | 90 | Days | Oral | | ppm | No effect | | | - | | Mortality | rat | 90 | Days | Oral | | ppm | No effect | | | | | Effect target | Species | Duration
of
exposure | Duration
unit | Route of administration | Lowest
Effect
dose | Dose unit | Effect
direction | Observed effect (positive and negative) | Assessment of each line of evidence | Assessment on the line of evidence | |---------------|---------|----------------------------|------------------|-------------------------|--------------------------|--------------|---------------------|--|-------------------------------------|------------------------------------| |
 mouse | 90 | Days | Oral | | ppm | No effect | | | | | | dog | 90 | Days | Oral | 8000 | ppm | Increase | 2/4 females | | | | | dog | 1 | Years | Oral | 3500 | ppm | Increase | 1/5 male and
1/5 female | | | | | rat | 22 | Days | Oral | | mg/kg bw/day | No effect | | | | | | rabbit | 13 | Days | Oral | 270 | mg/kg bw/day | Increase | Dose-related
deaths: 2/20 at
270 mkd, 9/20
at 800 mkd | | | | | Rat | 28 | Days | Oral | | mg/kg bw/day | No effect | | | | | | rat | 90 | Days | Oral | | ppm | No effect | | | | | | rat | 12 | Months | Oral | | ppm | No effect | No effect | | | | | rat | 22 | Months | Oral | | ppm | No effect | Poor survival in
all groups
typical for
strain, not a
compound-relat
ed effect. Study
terminated at
22-m. | | | | | mouse | 18 | Months | Oral | | ppm | No effect | | | | ### 2.2.1 - Have EAS-mediated parameters been sufficiently investigated? | | answer | |-------------------------|---| | EAS-mediated parameters | lack of the following studies: | | | OECD TG 443 | | | OECD TG 416, test protocol according to latest version of January 2001* | ^{*} Note: the two-generation reproduction study was conducted in 1990-1991 according to a former version of the OECD TG 416. Several EAS-mediated parameters were not investigated: EAS-mediated parameters not investigated sperm parameters, oestrus cycle length, vaginal opening, preputial separation, anogenital distance, uterus weight, ovary weight, epididymis weight, prostate weight, adrenals weight pituitary weight coagulating gland weight seminal vesicles weight ### 2.2.2 - Lines of evidence for adverse effects and endocrine activity related to EAS-modalities | dy ID
trix | Effect
classification | Effect
target | Species | Duration
of
exposure | Duration
unit | Route of administration | Effect
dose | Dose unit | Effect
direction | Observed effect (positive and negative) | Assessment of each line of evidence | Assessment on the integrated line of evidence | Modalii | |---------------|-------------------------------------|-----------------------------------|-----------------------------------|----------------------------|-----------------------------------|-----------------------------------|----------------|-----------|--|--|-------------------------------------|---|---------| | | | Androgen
receptor | Human cells | 23 | Hours | Uptake from the medium | | μМ | No effect | Negative for AR
agonist/antagonist in the
stably Transfected Human
AR Transactivation Assay
(AR STTA, OECD 458) | | | EAS | | | In vitro
mechanistic
Estrogen | Human liver
cell line
HepG2 | 24 | Hours | Uptake from the medium (in vitro) | | | No effect | Negative for AR agonist
(ATG_AR_TRANS_up) | | | | | | | | Estragon | Human cells | 20-22 | Hours | Uptake from the medium | | μМ | No effect | Negative for ER
agonist/antagonist in the
stably Transfected Human
ERα Transcriptional
Activation Assay (ER STTA,
OECD 455) | | | | | | | | Human liver
cell line
HepG2 | 24 | Hours | Uptake from the medium (in vitro) | | | No effect | Negative for ER agonist
(ATG_ER_CIS_up) | | | | | | CYP19 | | Human liver
cell line
HepG2 | 24 | Hours | Uptake from the medium (in vitro) | | | No effect | Negative for ER agonist
(ATG_ERa_TRANS_up) | | | | | | | CYP19 | Rat
microsomes | 3 | Hours | Uptake from the medium | 500 | μМ | Decrease | Aromatase inhibition - no
IC50 calculated (approx.
25% inhibition at 500 μM)
[Release of 3H2O from
3H-androstenedione] | | | | | dy ID
trix | Effect
classification | Effect
target | Species | Duration
of
exposure | Duration
unit | Route of administration | Lowest
Effect
dose | Dose unit | Effect
direction | Observed effect (positive and negative) | Assessment of each line of evidence | Assessment on the integrated line of evidence | Modali | |---------------|--------------------------|-------------------------|--|----------------------------|------------------------|-------------------------|--------------------------|-----------------|--|--|-------------------------------------|---|--------| | | | | Human
recombinant
microsomes | 15 | Minutes | Uptake from the medium | | μМ | No effect | [Release of 3H2O from
3H-androstenedione]
(Aromatase inhibition assay
using human recombinant
microsomes, OPPTS
890.1200) | | | | | | | | Human
placental
cells | 48 | Hours | Uptake from the medium | | μМ | No effect | No change in CYP19 gene expression | | | | | | | Rat liver
microsomes | 3 | Hours | Uptake from the medium | 800 | μМ | Decrease | Aromatase inhibition - no IC50 calculated (approx. 50% inhibition at 800 μM) [Release of 3H2O from 3H-androstenedione] | | | | | | | | | Rat ovary
homogenate | 20 | Minutes | Uptake from the medium | 250 | μМ | Decrease | Equivocal aromatase
inhibition / No firm
conclusion, limitations
[Measure of the conversion
of testosterone to estradiol] | | | | | | | | Rat
microsomes
from treated
animals | 15 | Days | Oral | | mg/kg
bw/day | No effect | No aromatase inhibition in
microsomes prepared from
liver of rats treated for 15
days [Release of 3H2O from
3H-androstenedione] | | | | | | | | Rat
microsomes
from treated
animals | 15 | Days | Oral | 1000 | mg/kg
bw/day | No effect | Hepatic aromatase activity not altered in microsomes prepared from liver of rats treated for 15 days (but some control animals had higher activity than treated animals) | | | | | dy ID
trix | Effect
classification | Effect
target | Species | Duration
of
exposure | Duration
unit | Route of administration | Lowest
Effect
dose | Dose unit | Effect
direction | Observed effect (positive and negative) | Assessment of each line of evidence | Assessment on the integrated line of evidence | Modali | |---------------|--------------------------|---------------------------|--|----------------------------|------------------|-------------------------|--------------------------|-----------|---------------------|---|-------------------------------------|---|--------| | | | | Rat
C8-induced
liver
microsomes | | | Uptake from the medium | 173.6 | μМ | Decrease | Dose-dependent aromatase inhibition, SS at all concentrations [Release of 3H2O from 3H-androstenedione] | | | | | | | | Rat ovary
homogenate | 20 | Minutes | Uptake from the medium | 100 | μМ | Decrease | Aromatase inhibition - no IC50 calculated (22% inhibition at 100 μ M, 30% inhibition at 500 μ M) [Measure of the conversion of testosterone to estradiol] | | | | | | | Estradiol synthesis | Human
H295R cells | 48 | Hours | Uptake from the medium | | μМ | Increase | Equivocal induction of E
biosynthesis (highest
concentration only) or not
interpretable
(Steroidogenesis assay,
OECD 456) | | | | | | | | Human
placental
cells | 48 | Hours | Uptake from the medium | 40 | μМ | Decrease | Decreased estradiol concentration (70% of control, p≤0.01) | | | | | | | | Rat Leydig
cells | 5 | Hours | Uptake from the medium | 100 | μМ | Decrease | With and without hCG | | | | | | | Testosterone
synthesis | Human
H295R cells | 48 | Hours | Uptake from the medium | | μМ | Decrease | Equivocal inhibition of T
biosynthesis (1 or 2 highest
concentrations)
(Steroidogenesis assay,
OECD 456) | | | | | | | | Rat Leydig
cells | 5 | Hours | Uptake from the medium | 100 | μМ | Increase | Without hCG | | | | | dy ID
trix | Effect
classification | Effect
target | Species | Duration
of
exposure | Duration
unit | Route of administration | Lowest
Effect
dose | Dose unit | Effect
direction | Observed effect (positive and negative) | Assessment of each line of evidence | Assessment on the integrated line of evidence | Modali | |---------------|--------------------------|---|--|----------------------------|------------------------|-------------------------|--------------------------|-----------------|---------------------|---|-------------------------------------|---|--------| | | | Other hormones
(in vitro) | Rat
microsomes
from treated
animals | 15 | Days | Oral | | mg/kg
bw/day | No effect | No change in in vitro
metabolism of testosterone
in microsomes prepared
from treated animals
incubated for 30 min with
testosterone | | | | | | Progesterone (in vitro) | Human
placental
cells | 48 | Hours | Uptake from the medium | | μМ | No effect | | | | | | | | | Rinding to the | Rat Leydig
cells | 5 | Hours | Uptake from the medium | 100 | μМ | No effect | With and without hCG | | | | | | Dopa | Binding to the
Dopamine D2
receptor | Human HEK
293 cells | 2 | Hours | Uptake from the
medium | | μМ | No effect | | | | | | | In vivo | Estradial lovel | Rat | 28 | Days | Oral | 5 | mg/kg
bw/day | Decrease | Lower mean rate of increase in serum estradiol from pre-study to wk4 at 5 mkd, as well as NSS decreased serum estradiol at wk4 in all tested groups compared to control | | | EAS | | | mechanistic | Estradiol level | Rat | 15 | Days | Oral | | mg/kg
bw/day | No effect | No consistent change, high variability, reliability of the hormone analysis questionable | | | | | | | | Rat | 15 | Days | Oral | | mg/kg
bw/day | No effect | No consistent change, high variability, reliability of the hormone analysis | | | | | dy ID
trix | Effect classification | Effect
target | Species | Duration
of
exposure | Duration
unit | Route of administration | Lowest
Effect
dose | Dose unit | Effect
direction | Observed effect (positive and negative) | Assessment of each line of evidence | Assessment on the integrated line of evidence | Modali | |---------------|-----------------------|-----------------------|---------|----------------------------|------------------|-------------------------|--------------------------|-----------------|---------------------|---|-------------------------------------|---|--------| | | | | | | | | | | | questionable | | | | | | | | Rat | 15 | Days | Oral | 1000 | mg/kg
bw/day | Decrease | Decreased serum estradiol,
no effect interstitial fluid
estradiol | | | | | | | | Rat | 15 | Days | Oral | 2000 | mg/kg
bw/day | Decrease | Decreased serum estradiol,
no effect interstitial fluid
estradiol | | | | | | | | Rat | 12 | Months | Oral | 750 | ppm | Decrease | Decreased serum estradiol in 1-y interim sacrifice rats of the 2-y rat study | | | | | | | | Rat | 28 | Days | Oral | | mg/kg
bw/day | No effect | | | | | | | | | Rat | 14 | Days | Oral | | mg/kg
bw/day | No effect | No significant differences in
the plasma AUC0-6 or CL0-6
of testosterone from
controls or treated rats, but
high variability in a same
group | | | | | | | Testosterone
level | Rat | 15 | Days | Oral | | mg/kg
bw/day | No effect | No consistent change, high variability, reliability of the hormone analysis questionable | | | | | | | | Rat | 15 | Days | Oral | | mg/kg
bw/day | No effect | No consistent change, high variability, reliability of the hormone analysis questionable | | | | | | | | Rat | 15 | Days | Oral | 1000 | mg/kg
bw/day | No effect | No effect serum and interstitial fluid testosterone | | | | | dy ID
trix | Effect
classification | Effect
target | Species | Duration
of
exposure | Duration
unit | Route of administration | Lowest
Effect
dose | Dose unit | Effect
direction | Observed effect (positive and negative) | Assessment of each line of evidence | Assessment on the integrated line of evidence | Modali | |---------------|--------------------------|--------------------------|---------|----------------------------|------------------|-------------------------|--------------------------|-----------------|---------------------|---|-------------------------------------|---|--------| | | | | Rat | 15 | Days | Oral | 2000 | mg/kg
bw/day | Increase | Increased serum
testosterone, no effect
interstitial fluid
testosterone | | | | | | | | Rat | 12 | Months | Oral | 750 | ppm | Increase | Increased serum
testosterone in 1-y interim
sacrifice rats of the 2-y rat
study | | | | | | | | Rat | 28 | Days | Oral | | mg/kg
bw/day | No effect | | | | | | | | Follicle Stimulating | Rat | 15 | Days | Oral | | mg/kg
bw/day | No effect | No consistent change, high
variability, reliability of the
hormone analysis
questionable | | | | | | | | Rat | 15 | Days | Oral | | mg/kg
bw/day | No effect | No consistent change, high variability, reliability of the hormone analysis questionable | | | | | | | | Rat | 15 | Days | Oral | 1000 | mg/kg
bw/day | Increase | Slight increased serum FSH (NSS, high variability) | | | | | | | Luteinizing Hormone (LH) | Rat | 12 | Months | Oral | 1500 | ppm | Increase | Increased serum FSH in 1-y interim sacrifice rats of the 2-y rat study | | | | | | | | Rat | 28 | Days | Oral | | mg/kg
bw/day | No effect | | | | | | | | | Rat | 15 | Days | Oral | | mg/kg
bw/day | No effect | No consistent change, high variability, reliability of the hormone analysis questionable | | | | | dy ID
trix | Effect
classification | Effect
target | Species | Duration
of
exposure | Duration
unit | Route of administration | Lowest
Effect
dose | Dose unit | Effect
direction | Observed effect (positive and negative) | Assessment of each line of evidence | Assessment on the integrated line of evidence | Modali | |---------------|--------------------------|---------------------------------------|---------|----------------------------|------------------|-------------------------|--------------------------|-----------------|---------------------|---|-------------------------------------|---|--------| | | | | Rat | 15 | Days | Oral | | mg/kg
bw/day | No effect | No consistent change, high variability, reliability of the hormone analysis questionable | | | | | | | | Rat | 15 | Days | Oral | 1000 | mg/kg
bw/day | Increase | Slight increased serum LH (NSS, high variability) | | | | | | | | Rat | 12 | Months | Oral | 1500 | ppm | Increase | Increased serum LH in 1-y interim sacrifice rats of the 2-y rat study | | | | | | | Other hormones Ra Ra Prolactin Ra | Rat | 15 | Days | Oral | | mg/kg
bw/day | No effect | Dihydrotestosterone level.
No consistent change, high
variability, reliability of the
hormone analysis
questionable | | | | | | | | Rat | 15 | Days | Oral | | mg/kg
bw/day | No effect | Dihydrotestosterone level.
No consistent change, high
variability, reliability of the
hormone analysis
questionable | | | | | | | | Rat | 28 | Days | Oral | | mg/kg
bw/day | No effect | | | | | | | | | Rat | 15 | Days | Oral | | mg/kg
bw/day | No effect | No consistent change, high variability, reliability of the hormone analysis questionable | | | | | | | | Rat | 15 | Days | Oral | 1000 | mg/kg
bw/day | Increase | Slight increased serum
prolactin (NSS, high
variability) | | | | | | | | Rat | 12 | Months | Oral | | ppm | No effect | | | | | | dy ID
trix | Effect
classification | Effect
target | Species | Duration
of
exposure | Duration
unit | Route of administration | Lowest
Effect
dose | Dose unit | Effect
direction | Observed effect (positive and negative) | Assessment of each line of evidence | Assessment on the integrated line of evidence | Modali | |---------------|--------------------------|------------------------------|---------|----------------------------|------------------|-------------------------|--------------------------|-----------------|---------------------|---|-------------------------------------|---|--------| | | | | Rat | 15 | Days | Oral | | mg/kg
bw/day | No effect | No consistent effect (no dose relationship but saturation of the absorption) | | | EAS | | | | Coagulating gland weight | Rat | 15 | Days | Oral | | mg/kg
bw/day | No effect | | | | | | | | S-mediated | Rat | 15 | Days | Oral | 1000 | mg/kg
bw/day | Decrease | Mean absolute and relative acc sex glands weight -without dose response | | | | | | | | Rat | 15 | Days | Oral | 2000 | mg/kg
bw/day | Decrease | Mean absolute and relative acc sex glands weight | | | | | | | | rat | 90 | Days | Oral | | ppm | No effect | | | | | | | EATS-mediated | | rat | 90 | Days | Oral | 15000 | ppm | Increase | Oligospermia, atrophy -
associated with decreased
BW (40%) and BWG (70%) | | | | | | | | mouse | 90 | Days | Oral | | ppm | No effect | | | | | | | | Epididymis
histopathology | dog | 90 | Days | Oral | 4000 | ррт | Increase | Aspermatogenesis, oligospermia - associated with decreased BW (25%) and BWG (83%) at 8000 ppm but no effect on BW(G) at 4000 ppm. Nevertheless, effect not observed in the 1-y dog study, may be due to immaturity of dogs in the 90-d study | | | | | | | | dog | 1 | Years | Oral | | ppm | No effect | | | | | | dy ID
trix | Effect
classification | Effect
target | Species | Duration
of
exposure | Duration
unit | Route of administration | Lowest
Effect
dose | Dose unit | Effect
direction | Observed effect (positive and negative) | Assessment of each line of evidence | Assessment on the integrated line of evidence | Modali | |---------------|--------------------------|---------------------------------|---------|----------------------------|------------------|-------------------------|--------------------------|-----------------|---------------------|--|-------------------------------------|---|--------| | | | | rat | 131 | Days | Oral | | ppm | No effect | | | | | | | | | Rat | 15 | Days | Oral | | mg/kg
bw/day | No effect | | | | | | | | | rat | 12 | Months | Oral | | ppm | No effect | | | | | | | | | rat | 22 | Months | Oral | | ppm | No effect | | | | | | | | |
mouse | 18 | Months | Oral | | ppm | No effect | | | | | | | | Epididymis
weight | Rat | 15 | Days | Oral | | mg/kg
bw/day | No effect | No consistent effect (no dose relationship but saturation of the absorption) | | | | | | | | Rat | 15 | Days | Oral | | mg/kg
bw/day | No effect | | | | | | | | | rat | 90 | Days | Oral | | ppm | No effect | | | | | | | | | rat | 90 | Days | Oral | | ppm | No effect | | | | | | | | Prostate | mouse | 90 | Days | Oral | | ppm | No effect | | | | | | | | histopathology
(with seminal | dog | 1 | Years | Oral | | ppm | No effect | | | | | | | | vesicles and coagulating | rat | 131 | Days | Oral | | ppm | No effect | | | | | | | | glands) | rat | 12 | Months | Oral | | ppm | No effect | | | | | | | | | rat | 22 | Months | Oral | | ppm | No effect | | | | | | | | | mouse | 18 | Months | Oral | | ppm | No effect | | | | | | | | Prostate weight | Rat | 15 | Days | Oral | | mg/kg
bw/day | No effect | No consistent effect (no dose relationship but saturation of the absorption) | | | | | | | | Rat | 15 | Days | Oral | | mg/kg
bw/day | No effect | | | | | | dy ID
trix | Effect
classification | Effect
target | Species | Duration
of
exposure | Duration
unit | Route of administration | Lowest
Effect
dose | Dose unit | Effect
direction | Observed effect (positive and negative) | Assessment of each line of evidence | Assessment on the integrated line of evidence | Modali | |---------------|--------------------------|-------------------------|---------|----------------------------|------------------|-------------------------|--------------------------|-----------------|---------------------|--|-------------------------------------|---|--------| | | | | Rat | 15 | Days | Oral | 1000 | mg/kg
bw/day | Decrease | Mean absolute and relative acc sex glands weight -without dose response | | | | | | | | Rat | 15 | Days | Oral | 2000 | mg/kg
bw/day | Decrease | Mean absolute and relative acc sex glands weight | | | | | | | | rat | 90 | Days | Oral | | ppm | No effect | | | | | | | | | rat | 90 | Days | Oral | | ppm | No effect | | | | | | | | Seminal vesicles | mouse | 90 | Days | Oral | | ppm | No effect | | | | | | | | histopathology | rat | 12 | Months | Oral | | ppm | No effect | | | | | | | | | rat | 22 | Months | Oral | | ppm | No effect | | | | | | | | | mouse | 18 | Months | Oral | | ppm | No effect | | | | | | | | | Rat | 15 | Days | Oral | | mg/kg
bw/day | No effect | No consistent effect (no dose relationship but saturation of the absorption) | | | | | | | Seminal vesicles weight | Rat | 15 | Days | Oral | | mg/kg
bw/day | No effect | | | | | | | | weight | Rat | 15 | Days | Oral | 1000 | mg/kg
bw/day | Decrease | Mean absolute and relative acc sex glands weight -without dose response | | | | | | | | Rat | 15 | Days | Oral | 2000 | mg/kg
bw/day | Decrease | Mean absolute and relative acc sex glands weight | | | | | | | Testis | rat | 90 | Days | Oral | | ppm | No effect | | | | | | Effect
classification | Effect
target | Species | Duration
of
exposure | Duration
unit | Route of administration | Lowest
Effect
dose | Dose unit | Effect
direction | Observed effect (positive and negative) | Assessment of each line of evidence | Assessment on the integrated line of evidence | Modali | |--------------------------|------------------|---------|----------------------------|------------------|-------------------------|--------------------------|-----------------|---------------------|--|-------------------------------------|---|--------| | | histopathology | rat | 90 | Days | Oral | 15000 | ppm | Increase | Atrophy, degeneration,
bilateral Leydig cell
hyperplasia - associated
with decreased BW (40%)
and BWG (70%) | | | | | | | mouse | 90 | Days | Oral | | ppm | No effect | | | | | | | | dog | 90 | Days | Oral | 4000 | ppm | Increase | Bilateral tubular atrophy, decrease thickness of the seminiferous tubules, cytoplasmic vacuolation of germinal epithelium (at 8000 ppm) - associated with decreased BW (25%) and BWG (83%) at 8000 ppm but no effect on BW(G) at 4000 ppm. Nevertheless, effect not observed in the 1-y dog study, may be due to immaturity of dogs in the 90-d study | | | | | | | dog | 1 | Years | Oral | | ppm | No effect | | | | | | | r: | rat | 131 | Days | Oral | | ppm | No effect | | | | | | | | Rat | 15 | Days | Oral | | mg/kg
bw/day | No effect | | | | | | | | rat | 12 | Months | Oral | | ppm | No effect | | | | | | | | rat | 22 | Months | Oral | 750 | ppm | Increase | Leydig cell hyperplasia,
adenoma (Carc 2 H351, RAC
2013) | | | | | Effect
classification | Effect
target | Species | Duration
of
exposure | Duration
unit | Route of administration | Lowest
Effect
dose | Dose unit | Effect
direction | Observed effect (positive and negative) | Assessment of each line of evidence | Assessment on the integrated line of evidence | Modali | |--------------------------|------------------|-----------------------|---|------------------|-------------------------|---|--|--|--
---|--|--| | | | mouse | 18 | Months | Oral | | ppm | No effect | | | | | | | | rat | 90 | Days | Oral | 10000 | ppm | Increase | Mean relative testes weight | | | | | | | rat | 90 | Days | Oral | 15000 | ppm | Decrease | Mean absolute testes
weight - associated with
important decreased BW
(40%) and BWG (70%) | | | | | | | mouse | 90 | Days | Oral | | ppm | No effect | | | | | | | | dog | 90 | Days | Oral | 4000 | ppm | Decrease | Absolute and relative testes weight | | | | | | | dog | 1 | Years | Oral | | ppm | No effect | | | | | | | | rat | 131 | Days | Oral | 750 | ppm | Decrease | Mean relative testes weight | | | | | | | rat | 131 | Days | Oral | 1500 | ppm | Decrease | Mean relative testes weight | | | | | | Testis weight | Rat | 28 | Days | Oral | | mg/kg
bw/day | No effect | | | | | | | | Rat | 15 | Days | Oral | | mg/kg
bw/day | No effect | Trend towards increased rel
testes weight at 1500 and
2000 mkd. No consistent
effect (no dose relationship
but saturation of the
absorption) | | | | | | | Rat | 15 | Days | Oral | | mg/kg
bw/day | No effect | | | | | | | R | Rat | 15 | Days | Oral | 1000 | mg/kg
bw/day | Increase | Mean relative testes weight - without dose response | | | | | | | Rat | 15 | Days | Oral | 2000 | mg/kg
bw/day | Increase | Mean relative testes weight | | | | | | | classification target | classification target Species mouse rat mouse dog dog rat rat Testis weight Rat Rat Rat Rat | Species | Species | Species Of exposure Duration unit Route of administration | Prect Classification Classificatio | Species Species Of exposure Duration unit Administration Effect dose Dose unit | Species Species Of exposure Unit Note of administration Effect dose Dose unit uni | traget before target species of exposure unit administration ppm No effect direction and negative) Part | Species of exposure unit administration administrat | Percent Species Of exposure expos | | dy ID
trix | Effect
classification | Effect
target | Species | Duration
of
exposure | Duration
unit | Route of administration | Lowest
Effect
dose | Dose unit | Effect
direction | Observed effect (positive and negative) | Assessment of each line of evidence | Assessment on the integrated line of evidence | Modali | |---------------|--------------------------|----------------------------|---------|----------------------------|------------------|-------------------------|--------------------------|-----------|---------------------|---|-------------------------------------|---|--------| | | | | rat | 12 | Months | Oral | 750 | ppm | Increase | Mean relative testes weight
(and also absolute at 1500
ppm) | | | | | | | | rat | 22 | Months | Oral | 1500 | ppm | Increase | Mean relative testes weight | | | | | | | | mouse | 18 | Months | Oral | | ppm | No effect | | | | | | | | | rat | 90 | Days | Oral | | ppm | No effect | | | | | | | | | rat | 90 | Days | Oral | | ppm | No effect | | | | | | | | | mouse | 90 | Days | Oral | | ppm | No effect | | | | | | | | Mammary gland | dog | 1 | Years | Oral | | ppm | No effect | | | | | | | | histopathology
(female) | rat | 12 | Months | Oral | | ppm | No effect | | | | | | | | | rat | 22 | Months | Oral | 750 | ppm | Decrease | Dec. incidence of mammary
masses (fibroadenomas).
Only controls, high dose
and decedents examined. | | | | | | | | mouse | 18 | Months | Oral | | ppm | No effect | | | | | | | | | rat | 90 | Days | Oral | | ppm | No effect | | | | | | | | | rat | 90 | Days | Oral | | ppm | No effect | | | | | | | | Ovary distopathology di | mouse | 90 | Days | Oral | | ppm | No effect | | | | | | | | | dog | 90 | Days | Oral | | ppm | No effect | | | | | | | | | dog | 1 | Years | Oral | | ppm | No effect | | | | | | | | | rat | 131 | Days | Oral | | ppm | No effect | | | | | | | | | rat | 12 | Months | Oral | | ppm | No effect | | | | | | | | | rat | 22 | Months | Oral | | ppm | No effect | | | | | | dy ID
trix | Effect
classification | Effect
target | Species | Duration
of
exposure | Duration
unit | Route of administration | Lowest
Effect
dose | Dose unit | Effect
direction | Observed effect (positive and negative) | Assessment of each line of evidence | Assessment on the integrated line of evidence | Modali | |---------------|----------------------------------|---------------------------------|---------|----------------------------|------------------|-------------------------|--------------------------|-----------|---------------------|---|-------------------------------------|---|--------| | | | | mouse | 18 | Months | Oral | | ppm | No effect | | | | | | | | | rat | 90 | Days | Oral | | ppm | No effect | | | | | | | | | rat | 90 | Days | Oral | | ppm | No effect | | | | | | | | | mouse | 90 | Days | Oral | | ppm | No effect | | | | | | | | Uterus | dog | 90 | Days | Oral | | ppm | No effect | | | | | | | | histopathology
(with cervix) | dog | 1 | Years | Oral | | ppm | No effect | | | | | | | | (with cervix) | rat | 131 | Days | Oral | | ppm | No effect | | | | | | | | | rat | 12 | Months | Oral | | ppm | No effect | | | | | | | | | rat | 22 | Months | Oral | | ppm | No effect | | | | | | | | | mouse | 18 | Months | Oral | | ppm | No effect | | | | | | | | | rat | 90 | Days | Oral | | ppm | No effect | | | | | | | | | rat | 90 | Days | Oral | | ppm | No effect | | | | | | | | | mouse | 90 | Days | Oral | |
ppm | No effect | | | | | | | | Vagina | dog | 1 | Years | Oral | | ppm | No effect | | | | | | | | histopathology | rat | 131 | Days | Oral | | ppm | No effect | | | | | | | | | rat | 12 | Months | Oral | | ppm | No effect | | | | | | | | r. Adrenals | rat | 22 | Months | Oral | | ppm | No effect | | | | | | | | | mouse | 18 | Months | Oral | | ppm | No effect | | | | | | | | | rat | 90 | Days | Oral | | ppm | No effect | | | | | | | Sensitive to, but not diagnostic | | rat | 90 | Days | Oral | | ppm | No effect | | | | | | | of, EATS | histopathology | mouse | 90 | Days | Oral | | ppm | No effect | | | | | | | | | dog | 90 | Days | Oral | | ppm | No effect | | | | | | dy ID
trix | Effect
classification | Effect
target | Species | Duration
of
exposure | Duration
unit | Route of administration | Lowest
Effect
dose | Dose unit | Effect
direction | Observed effect (positive and negative) | Assessment of each line of evidence | Assessment on the integrated line of evidence | Modali | |---------------|--------------------------|-------------------------------|---------|----------------------------|------------------|-------------------------|--------------------------|-----------|---------------------|---|-------------------------------------|---|--------| | | | | dog | 1 | Years | Oral | | ppm | No effect | | | | | | | | | rat | 12 | Months | Oral | | ppm | No effect | | | | | | | | | rat | 22 | Months | Oral | | ppm | No effect | | | | | | | | | mouse | 18 | Months | Oral | | ppm | No effect | | | | | | | | | rat | 90 | Days | Oral | | ppm | No effect | | | | | | | | | dog | 90 | Days | Oral | | ppm | No effect | | | | | | | | Adrenals weight | dog | 1 | Years | Oral | | ppm | No effect | | | | | | | | Aurenais weight | rat | 12 | Months | Oral | | ppm | No effect | | | | | | | | | rat | 22 | Months | Oral | | ppm | No effect | | | | | | | | | mouse | 18 | Months | Oral | | ppm | No effect | | | | | | | | | rat | 90 | Days | Oral | | ppm | No effect | | | | | | | | | rat | 90 | Days | Oral | | ppm | No effect | | | | | | | | | mouse | 90 | Days | Oral | | ppm | No effect | | | | | | | | Brain | dog | 90 | Days | Oral | | ppm | No effect | | | | | | | | histopathology
examination | dog | 1 | Years | Oral | | ppm | No effect | | | | | | | | examination | rat | 90 | Days | Oral | | ppm | No effect | | | | | | | | | rat | 12 | Months | Oral | | ppm | No effect | | | | | | | | | rat | 22 | Months | Oral | | ppm | No effect | | | | | | | | | mouse | 18 | Months | Oral | | ppm | No effect | | | | | | | | | rat | 90 | Days | Oral | 10000 | ppm | Increase | Mean relative brain weight | | | | | | | Brain weight | rat | 90 | Days | Oral | 2000 | ppm | Increase | Mean relative brain weight | | | | | | | | rat | 90 | Days | Oral | 2000 | ppm | Decrease | Mean absolute brain weight | | | | | dy ID
trix | Effect
classification | Effect
target | Species | Duration
of
exposure | Duration
unit | Route of administration | Lowest
Effect
dose | Dose unit | Effect
direction | Observed effect (positive and negative) | Assessment of each line of evidence | Assessment on the integrated line of evidence | Modali | |---------------|--------------------------|------------------------|---------|----------------------------|------------------|-------------------------|--------------------------|-----------------|---------------------|--|-------------------------------------|---|--------| | | | | mouse | 90 | Days | Oral | | ppm | No effect | | | | | | | | | dog | 90 | Days | Oral | | ppm | No effect | | | | | | | | | dog | 1 | Years | Oral | | ppm | No effect | | | | | | | | | rat | 90 | Days | Oral | 1500 | ppm | Increase | Mean relative brain weight | | | | | | | | rat | 12 | Months | Oral | 1500 | ppm | Increase | Mean relative brain weight | | | | | | | | rat | 22 | Months | Oral | 1500 | ppm | Increase | Mean relative brain weight | | | | | | | | mouse | 18 | Months | Oral | | ppm | No effect | | | | | | | | Fertility
(mammals) | rat | 131 | Days | Oral | | ppm | No effect | | | | | | | | | rat | 131 | Days | Oral | | ppm | No effect | | | | | | | | Litter size | rat | 22 | Days | Oral | | mg/kg
bw/day | No effect | | | | | | | | | rabbit | 13 | Days | Oral | | mg/kg
bw/day | No effect | | | | | | | | Litter viability | rat | 131 | Days | Oral | | ppm | No effect | | | | | | | | | rat | 131 | Days | Oral | 750 | ppm | Decrease | Pup weight (<10%) | | | | | | | Litter/pup | rat | 22 | Days | Oral | | mg/kg
bw/day | No effect | | | | | | | | weight | rabbit | 13 | Days | Oral | 270 | mg/kg
bw/day | Decrease | Decreased fetal weight (no clear relationship but low nb of litters in the HD group) | | | | | | | Number of | rat | 131 | Days | Oral | | ppm | No effect | | | | | | dy ID
trix | Effect
classification | Effect
target | Species | Duration
of
exposure | Duration
unit | Route of administration | Lowest
Effect
dose | Dose unit | Effect
direction | Observed effect (positive and negative) | Assessment of each line of evidence | Assessment on the integrated line of evidence | Modali | |---------------|--------------------------|---|---------|----------------------------|------------------|-------------------------|--------------------------|-----------------|---------------------|--|-------------------------------------|---|--------| | | | implantations,
corpora lutea | rat | 22 | Days | Oral | | mg/kg
bw/day | No effect | | | | | | | | | rabbit | 13 | Days | Oral | | mg/kg
bw/day | No effect | | | | | | | | Number of live births | rat | 131 | Days | Oral | | ppm | No effect | | | | | | | | Numbers of | rat | 131 | Days | Oral | | ppm | No effect | | | | | | | | embryonic or
foetal deaths
and viable | rat | 22 | Days | Oral | | mg/kg
bw/day | No effect | | | | | | | | foetuses | rabbit | 13 | Days | Oral | | mg/kg
bw/day | No effect | | | | | | | | | rat | 90 | Days | Oral | | ppm | No effect | | | | | | | | | rat | 90 | Days | Oral | | ppm | No effect | | | | | | | | | mouse | 90 | Days | Oral | | ppm | No effect | | | | | | | | | dog | 90 | Days | Oral | | ppm | No effect | | | | | | | | Pituitary | dog | 1 | Years | Oral | | ppm | No effect | | | | | | | | histopathology | rat | 131 | Days | Oral | | ppm | No effect | | | | | | | | | Rat | 15 | Days | Oral | | mg/kg
bw/day | No effect | | | | | | | | | rat | 12 | Months | Oral | | ppm | No effect | | | | | | | | | rat | 22 | Months | Oral | | ppm | No effect | | | | | | | | | mouse | 18 | Months | Oral | | ppm | No effect | | | | | | | | Pituitary weight | Rat | 15 | Days | Oral | | mg/kg
bw/day | No effect | No consistent effect (no dose relationship but saturation of the | | | | | dy ID
trix | Effect
classification | Effect
target | Species | Duration
of
exposure | Duration
unit | Route of administration | Lowest
Effect
dose | Dose unit | Effect
direction | Observed effect (positive and negative) | Assessment of each line of evidence | Assessment on the integrated line of evidence | Modali | |---------------|--------------------------|----------------------------------|---------|----------------------------|------------------|-------------------------|--------------------------|-----------------|---------------------|--|-------------------------------------|---|--------| | | | | | | | | | | | absorption) | | | | | | | | Rat | 15 | Days | Oral | | mg/kg
bw/day | No effect | | | | | | | | | rat | 131 | Days | Oral | | ppm | No effect | | | | | | | | Post implantation loss | rat | 22 | Days | Oral | | mg/kg
bw/day | No effect | | | | | | | | Pre implantation rat | rabbit | 13 | Days | Oral | 270 | mg/kg
bw/day | Increase | Abortions: 8/16 at 270 mkd, 12/20 at 800 mkd | | | | | | | Pre implantation loss | rat | 131 | Days | Oral | | ppm | No effect | | | | | | | | Presence of anomalies (external, | rat | 22 | Days | Oral | 350 | mg/kg
bw/day | Increase | Variations - unossified skulls (350); slight retardation renal dev (1000); partially ossified vertebra (1000); Malf - incidence of external/skeletal, 4 fetuses from 4 litters, no specific pattern (1000) | | | | | | | visceral, skeletal | rabbit | 13 | Days | Oral | | mg/kg
bw/day | No effect | Insufficient number of
litters in the 2 highest dose
groups according to OECD
guideline - may
compromise assessment of
teratogenicity | | | | | | | Pup survival index | rat | 131 | Days | Oral | | ppm | No effect | | | | | | | | Sex ratio | rat | 131 | Days | Oral | | ppm | No effect | | | | | | dy ID
trix | Effect
classification | Effect
target | Species | Duration
of
exposure | Duration
unit | Route of administration | Lowest
Effect
dose | Dose unit | Effect
direction | Observed effect (positive and negative) | Assessment of each line of evidence | Assessment on the integrated line of evidence | Modali | |---------------|--------------------------|-------------------------|---------|----------------------------|------------------|-------------------------|--------------------------|-----------------|---------------------|---|-------------------------------------|---|--------| | | | | rat | 22 | Days | Oral | | mg/kg
bw/day | No effect | | | | | | | | | rabbit |
13 | Days | Oral | | mg/kg
bw/day | No effect | | | | | | | | Time to mating | rat | 131 | Days | Oral | | ppm | No effect | | | | | | | | | rat | 90 | Days | Oral | 10000 | ppm | Increase | Mean relative heart weight | | | | | | | | rat | 90 | Days | Oral | | ppm | No effect | | | | | | | | | mouse | 90 | Days | Oral | | ppm | No effect | | | | | | | | Heart weight | dog | 1 | Years | Oral | | ppm | No effect | | | | | | | | | rat | 12 | Months | Oral | | ppm | No effect | | | | | | | | rat | rat | 22 | Months | Oral | | ppm | No effect | | | | | | | | | mouse | 18 | Months | Oral | | ppm | No effect | | | | | | | Target organ toxicity | | rat | 90 | Days | Oral | 10000 | ppm | Increase | Hemosiderosis: pigment in prox tubules | | | | | | | | rat | 90 | Days | Oral | 2000 | ppm | Increase | Hemosiderosis: pigment in prox tubules | | | | | | | Kidney histopathology d | rat | 90 | Days | Oral | 15000 | ppm | Increase | Tubular epithelial cell atrophy | | | | | | | | mouse | 90 | Days | Oral | | ppm | No effect | | | | | | | | | dog | 90 | Days | Oral | | ppm | No effect | | | | | | | | | dog | 1 | Years | Oral | | ppm | No effect | | | | | | | | | rat | 12 | Months | Oral | | ppm | No effect | | | | | | | | | rat | 22 | Months | Oral | | ppm | No effect | | | | | | dy ID
trix | Effect
classification | Effect
target | Species | Duration
of
exposure | Duration
unit | Route of administration | Lowest
Effect
dose | Dose unit | Effect
direction | Observed effect (positive and negative) | Assessment of each line of evidence | Assessment on the integrated line of evidence | Modali | |---------------|--------------------------|------------------|---------|----------------------------|------------------|-------------------------|--------------------------|-----------------|---------------------|---|-------------------------------------|---|--------| | | | | mouse | 18 | Months | Oral | | ppm | No effect | | | | | | | | | rat | 90 | Days | Oral | 10000 | ppm | Decrease | Mean abs weight | | | | | | | | rat | 90 | Days | Oral | 10000 | ppm | Increase | Mean rel weight | | | | | | | | rat | 90 | Days | Oral | 2000 | ppm | Decrease | Mean absolute kidney weight | | | | | | | | rat | 90 | Days | Oral | 10000 | ppm | Increase | Mean relative kidney weight | | | | | | | Kidney weight | mouse | 90 | Days | Oral | | ppm | No effect | | | | | | | | , 5 | dog | 90 | Days | Oral | | ppm | No effect | | | | | | | | | dog | 1 | Years | Oral | | ppm | No effect | | | | | | | | | rat | 12 | Months | Oral | 1500 | ppm | Decrease | Mean absolute kidney weight | | | | | | | | rat | 22 | Months | Oral | 1500 | ppm | Decrease | Mean absolute kidney weight | | | | | | | | mouse | 18 | Months | Oral | | ppm | No effect | | | | | | | | | rat | 90 | Days | Oral | | ppm | No effect | | | | | | | | | rat | 90 | Days | Oral | | ppm | No effect | | | | | | | | | mouse | 90 | Days | Oral | 750 | ppm | Increase | Hepatocelluar hypertrophy | | | | | | | Liver d | dog | 90 | Days | Oral | 4000 | ppm | Increase | Bile stasis (f); Pigmented sinusoidal macrophages (m&f) | | | | | | | | dog | 1 | Years | Oral | 3500 | ppm | Increase | Hepatocelluar hypertrophy | | | | | | | | Rat | 15 | Days | Oral | | mg/kg
bw/day | No effect | | | | | | | | | rat | 12 | Months | Oral | | ppm | No effect | | | | | | dy ID
trix | Effect
classification | Effect
target | Species | Duration
of
exposure | Duration
unit | Route of administration | Lowest
Effect
dose | Dose unit | Effect
direction | Observed effect (positive and negative) | Assessment of each line of evidence | Assessment on the integrated line of evidence | Modali | |---------------|--------------------------|------------------|---------|----------------------------|------------------|-------------------------|--------------------------|-----------------|---------------------|---|-------------------------------------|---|--------| | | | | rat | 22 | Months | Oral | 750 | ppm | Decrease | Dec. incidence of periportal fatty change (m&f), eosinophilic & total foci of cellular alt (m), basophilic & total foci of cellular alt (f) | | | | | | | | mouse | 18 | Months | Oral | 2500 | ppm | Increase | Hepatic foci of cellular alteration, presence of intrahepatocellular erythrocytes, pigment accumulation in Kupffer cells and individual hepatocellular necrosis. Hepatocellular adenomas. | | | | | | | | rat | 90 | Days | Oral | 2000 | ppm | Increase | Mean relative liver weight (NSS, 11%; >20% and in M at higher doses) | | | | | | | | rat | 90 | Days | Oral | 2000 | ppm | Increase | Mean relative liver weight | | | | | | | | mouse | 90 | Days | Oral | 750 | ppm | Increase | Mean absolute & relative liver weight | | | | | | | Liver weight c | dog | 90 | Days | Oral | 4000 | ppm | Increase | Absolute and relative liver weight | | | | | | | | dog | 1 | Years | Oral | 3500 | ppm | Increase | Mean absolute and relative liver weight | | | | | | | | Rat | 28 | Days | Oral | | mg/kg
bw/day | No effect | | | | | | | | | Rat | 15 | Days | Oral | | mg/kg
bw/day | No effect | No consistent effect (no dose relationship but saturation of the | | | | | dy ID
trix | Effect
classification | Effect
target | Species | Duration
of
exposure | Duration
unit | Route of administration | Lowest
Effect
dose | Dose unit | Effect
direction | Observed effect (positive and negative) | Assessment of each line of evidence | Assessment on the integrated line of evidence | Modali | |---------------|--------------------------|----------------------------|---------|----------------------------|------------------|-------------------------|--------------------------|-----------------|---------------------|---|-------------------------------------|---|--------| | | | | | | | | | | | absorption) | /1 | | | | | | | | | | Rat | 15 | Days | Oral | | mg/kg
bw/day | No effect | | | | | | | | | Rat | 15 | Days | Oral | 1500 | mg/kg
bw/day | Increase | Mean relative liver weight | | | | | | | | Rat | 15 | Days | Oral | 2000 | mg/kg
bw/day | Decrease | Mean absolute liver weight | | | | | | | | rat | 12 | Months | Oral | 1500 | ppm | Increase | Mean relative liver weight | | | | | | | | mouse | 18 | Months | Oral | 2500 | ppm | Increase | Absolute & relative liver weight | | | | | | | | rat | 90 | Days | Oral | | ppm | No effect | | | | | | | | | rat | 90 | Days | Oral | | ppm | No effect | | | | | | | | | mouse | 90 | Days | Oral | | ppm | No effect | | | | | | | | Lung
histopathology | dog | 90 | Days | Oral | | ppm | No effect | | | | | | | | | rat | 12 | Months | Oral | | ppm | No effect | | | | | | | | | rat | 22 | Months | Oral | | ppm | No effect | | | | | | | | | mouse | 18 | Months | Oral | | ppm | No effect | | | | | | | | | rat | 90 | Days | Oral | | ppm | No effect | | | | | | | | | rat | 90 | Days | Oral | | ppm | No effect | | | | | | | | Pancreas
histopathology | mouse | 90 | Days | Oral | | ppm | No effect | | | | | | | | | dog | 90 | Days | Oral | | ppm | No effect | | | | | | | | | dog | 1 | Years | Oral | | ppm | No effect | | | | | | dy ID
trix | Effect
classification | Effect
target | Species | Duration
of
exposure | Duration
unit | Route of administration | Lowest
Effect
dose | Dose unit | Effect
direction | Observed effect (positive and negative) | Assessment of each line of evidence | Assessment on the integrated line of evidence | Modali | |---------------|--------------------------|------------------------------------|---------|----------------------------|------------------|-------------------------|--------------------------|-----------|---------------------|---|-------------------------------------|---|--------| | | | | rat | 12 | Months | Oral | | ppm | No effect | | | | | | | | | rat | 22 | Months | Oral | | ppm | No effect | | | | | | | | | mouse | 18 | Months | Oral | | ppm | No effect | | | | | | | | | rat | 90 | Days | Oral | | ppm | No effect | | | | | | | | Peripheral nerve
histopathology | rat | 22 | Months | Oral | 1500 | ppm | Increase | Incidence and severity of myelin/axon degeneration of the sciatic nerve | | | | | | | Spinal cord
histopathology | rat | 90 | Days | Oral | | ppm | No effect | | | | | | | | Spleen | rat | 90 | Days | Oral | 2000 | ppm | Increase | Extramedullary
hematopoiesis (in M and F
at higher doses) | | | | | | | histopathology | rat | 12 | Months | Oral | | ppm | No effect | | | | | | | | | rat | 22 | Months | Oral | | ppm | No effect | | | | | | | | | rat | 90 | Days | Oral | 10000 | ppm | Increase | Mean relative spleen weight | | | | | | | | rat | 90 | Days | Oral | 2000 | ppm | Increase | Mean relative spleen weight | | | | | | | Spleen weight | mouse | 90 | Days | Oral | | ppm | No effect | | | | | | | | | rat | 12 | Months | Oral | | ppm | No effect | | | | | | | | | rat | 22 | Months | Oral | 1500 | ppm | Decrease | Mean absolute spleen weight | | | | | | | | mouse | 18 | Months | Oral | | ppm | No effect | | | | | | dy ID
trix | Effect
classification | Effect
target | Species | Duration
of
exposure | Duration
unit | Route of administration | Lowest
Effect
dose | Dose unit | Effect
direction | Observed effect (positive and negative) | Assessment of each line of evidence | Assessment on the integrated line of evidence | Modali | |---------------
--------------------------|------------------|---------|----------------------------|------------------|-------------------------|--------------------------|-----------------|---------------------|--|-------------------------------------|---|--------| | | | | rat | 90 | Days | Oral | 2000 | ppm | Decrease | Mean body weight (7% in M, 3% in F) & body weight gain (11% in M, 7% in F) | _ | | | | | | | rat | 90 | Days | Oral | 2000 | ppm | Decrease | Mean body weight (9% in M, 16% in F) & body weight gain (16% in M, 40% in F) | | | | | | | | mouse | 90 | Days | Oral | | ppm | No effect | | | | | | | | | dog | 90 | Days | Oral | 8000 | ppm | Decrease | Mean body weight (25% in M, 15% in F) & body weight gain (83% in M, 57% in F) | | | | | | | | dog | 1 | Years | Oral | 3500 | ppm | Decrease | Mean body weight gain (18% in M, 20% in F) | | | | | | Systemic toxicity | Body weight | rat | 131 | Days | Oral | 750 | ppm | Decrease | Mean body weight (5% in F0 M) & body weight gain (13% in F0 M, 14% in F0 F) during premating | | | | | | | | rat | 131 | Days | Oral | 750 | ppm | Decrease | Mean body weight in F0 females during lactation (7%) and gestation (6%). | | | | | | | | rat | 131 | Days | Oral | 750 | ppm | Decrease | Mean body weight in F1
females during pre-mating,
lact., gest. (7%) and in M at
1500 ppm | | | | | | | | rat | 22 | Days | Oral | 350 | mg/kg
bw/day | Decrease | Body weight loss GD7-9,
body weight gain (GD7-17:
19% compared to
controls/30% at 1000 mkd) | | | | | dy ID
trix | Effect
classification | Effect
target | Species | Duration
of
exposure | Duration
unit | Route of administration | Lowest
Effect
dose | Dose unit | Effect
direction | Observed effect (positive and negative) | Assessment of each line of evidence | Assessment on the integrated line of evidence | Modali | |---------------|--------------------------|------------------|---------|----------------------------|------------------|-------------------------|--------------------------|-----------------|---------------------|--|-------------------------------------|---|--------| | | | | rabbit | 13 | Days | Oral | 90 | mg/kg
bw/day | Decrease | Body weight loss GD7-10,
body weight gain (32%
compared to controls
GD7-20) | | | | | | | | Rat | 28 | Days | Oral | | mg/kg
bw/day | No effect | | | | | | | | | rat | 90 | Days | Oral | 750 | ppm | Decrease | Mean body weight (10% in F) & body weight gain (22% in F) - at 3000 ppm in M | | | | | | | | Rat | 15 | Days | Oral | 500 | mg/kg
bw/day | Decrease | Mean body weight (7-15% on D15) & body weight gain (64-115% D1-8, 24-68% D1-15) | | | | | | | | Rat | 15 | Days | Oral | 2000 | mg/kg
bw/day | Decrease | Mean body weight (8% on D15) & body weight gain (68% D1-8, 42% D1-15) | | | | | | | | Rat | 15 | Days | Oral | 1000 | mg/kg
bw/day | Decrease | Mean body weight (10% on D15) & body weight gain (74% D1-15) | | | | | | | | rat | 12 | Months | Oral | 750 | ppm | Decrease | Mean body weight (7% in M, 7% in F) & body weight gain (11% in M, 13% in F) | | | | | | | | rat | 22 | Months | Oral | 1500 | ppm | Decrease | Mean body weight (14% in M, 15% in F) & body weight gain (20% in M, 23% in F) | | | | | | | | mouse | 18 | Months | Oral | 7000 | ppm | Decrease | Mean body weight gain (11% in M, 16% in F) | | | | | | | Clinical | rat | 90 | Days | Oral | 2000 | ppm | Decrease | RBC count, Hb, Ht | | | | | | ı | chemistry and | rat | 90 | Days | Oral | 10000 | ppm | Increase | MCV, Reticulocytes | | | | | dy ID
trix | Effect
classification | Effect
target | Species | Duration
of
exposure | Duration
unit | Route of administration | Lowest
Effect
dose | Dose unit | Effect
direction | Observed effect (positive and negative) | Assessment of each line of evidence | Assessment on the integrated line of evidence | Modali | |---------------|--------------------------|------------------|---------|----------------------------|------------------|-------------------------|--------------------------|-----------------|---------------------|--|-------------------------------------|---|--------| | | | haematology | rat | 90 | Days | Oral | 10000 | ppm | Increase | Lymphocytosis | | | | | | | | rat | 90 | Days | Oral | 2000 | ppm | Decrease | RBC count, Hb, Ht | | | | | | | | rat | 90 | Days | Oral | 2000 | ppm | Increase | MCV, Reticulocytes | | | | | | | | dog | 90 | Days | Oral | 8000 | ppm | Decrease | RBC count, Hb, Ht | | | | | | | | dog | 90 | Days | Oral | 8000 | ppm | Increase | MCV, Reticulocytes;
Hypercellularity of sternal,
femoral BM (regenarative
anemia) | | | | | | | | dog | 90 | Days | Oral | 4000 | ppm | Increase | ALAT, ASAT (and ALP at 8000 ppm) | | | | | | | | dog | 1 | Years | Oral | 3500 | ppm | Decrease | RBC count, Hb, Ht | 1 | | | | | | | dog | 1 | Years | Oral | 3500 | ppm | Increase | ALP | | | | | | | | rat | 12 | Months | Oral | 750 | ppm | Decrease | RBC count, Hb, Ht | | | | | | | | rat | 90 | Days | Oral | 2000 | ppm | Decrease | Food efficiency | | | | | | | | rat | 90 | Days | Oral | 2000 | ppm | Decrease | Food efficiency & food consumption | | | | | | | | mouse | 90 | Days | Oral | | ppm | No effect | | | | | | | | Food | rat | 131 | Days | Oral | 750 | ppm | Decrease | Food consumption and/or food efficiency | | | | | | | consumption | rat | 131 | Days | Oral | 750 | ppm | Decrease | Food consumption during premating | | | | | | | | rat | 22 | Days | Oral | 350 | mg/kg
bw/day | Decrease | Food consumption - days
7-9G, 9-11G; increased days
17-22G | | | | | | | | rabbit | 13 | Days | Oral | 270 | mg/kg
bw/day | Decrease | | | | | | dy ID
trix | Effect
classification | Effect | Species | Duration
of
exposure | Duration
unit | Route of administration | Lowest
Effect
dose | Dose unit | Effect
direction | Observed effect (positive and negative) | Assessment of each line of evidence | Assessment on the integrated line of evidence | Modalii | |---------------|--------------------------|-----------|---------|----------------------------|------------------|-------------------------|--------------------------|-----------------|---------------------|---|-------------------------------------|---|---------| | | | | Rat | 28 | Days | Oral | | mg/kg
bw/day | No effect | | | | | | | | | rat | 90 | Days | Oral | 750 | ppm | Decrease | | | | | | | | | Rat | 15 | Days | Oral | 500 | mg/kg
bw/day | Decrease | Food consumption and/or food efficiency | | | | | | | | Rat | 15 | Days | Oral | 2000 | mg/kg
bw/day | Decrease | Food consumption and/or food efficiency | | | | | | | | Rat | 15 | Days | Oral | 1000 | mg/kg
bw/day | Decrease | | | | | | | | | mouse | 18 | Months | Oral | | ppm | No effect | Food consumption & efficiency | | | | | | | | rat | 90 | Days | Oral | | ppm | No effect | | | | | | | | | rat | 90 | Days | Oral | | ppm | No effect | | | | | | | | | mouse | 90 | Days | Oral | | ppm | No effect | | | | | | | | | dog | 90 | Days | Oral | 8000 | ppm | Increase | 2/4 females | | | | | | | | dog | 1 | Years | Oral | 3500 | ppm | Increase | 1/5 male and 1/5 female | | | | | | | Mortality | rat | 22 | Days | Oral | | mg/kg
bw/day | No effect | | | | | | | | | rabbit | 13 | Days | Oral | 270 | mg/kg
bw/day | Increase | Dose-related deaths: 2/20
at 270 mkd, 9/20 at 800
mkd | | | | | | | | Rat | 28 | Days | Oral | | mg/kg
bw/day | No effect | | | | | | | | | rat | 90 | Days | Oral | | ppm | No effect | | 1 | | | | | | | rat | 12 | Months | Oral | | ppm | No effect | No effect | | | | | Effect
classification | Effect | Species | Duration
of
exposure | | Route of administration | Lowest
Effect
dose | Dose unit | | Observed effect (positive and negative) | Assessment on the integrated line of evidence | Modalii | |--------------------------|--------|---------|----------------------------|--------|-------------------------|--------------------------|-----------|-----------|---|---|---------| | | | rat | 22 | Months | Oral | | ppm | No effect | Poor survival in all groups
typical for strain, not a
compound-related effect.
Study terminated at 22-m. | | | | | | mouse | 18 | Months | Oral | | ppm | No effect | | | |