# T-modality

# 1) Completeness of the database: is the dataset complete for the ED assessment in line with the ED GD?

T-mediated adversity has been investigated in OECD TG 408 (ID: 1, 2, 4), 409 (ID: 6), 451 (ID: 5a, 5b), 452 (ID: 7), 453 (ID: 3a, 3b) studies.

### More specifically:

- **Thyroid weight** has been investigated in 90-day (ID: 6) and 1-year (ID: 7) dog studies. Thyroid weight is not measured in rats and mice.
- **Thyroid histopathology** has been investigated in short-term and long-term studies in rats (ID: 1, 2, 3a, 3b), dogs (ID: 6, 7) and mice (4, 5a).

There is no OECD TG 407 study included in the dossier. Thyroid adversity is not measured in the available OECD TG 416 (ID: 8) study.

Thyroid hormone measurements are not included in any of the available studies.

An outline on the available data is presented in Table 1, below:

| Table 1. | Sufficient data | set for T-mediated | adversity |
|----------|-----------------|--------------------|-----------|
|          |                 |                    |           |

| Species | Duration     | Guideline   | Study | Thyroid | Thyroid        | Hormone      |
|---------|--------------|-------------|-------|---------|----------------|--------------|
|         |              |             | ID    | weight  | histopathology | measurements |
| rat     | 90-day       | OECD TG 408 | 1     | No data | ✓              | No data      |
|         |              |             | 2     | No data | ✓              | No data      |
|         | 12-months    | OECD TG 453 | 3a    | No data | ✓              | No data      |
|         | 22-months    | OECD TG 453 | 3b    | No data | ✓              | No data      |
|         | 2-generation | OECD TG 416 | 8     | No data | No data        | No data      |
| dog     | 3-months     | OECD TG 409 | 6     | ✓       | ✓              | No data      |
|         | 1-year       | OECD TG 452 | 7     | ✓       | ✓              | No data      |
| mouse   | 90-day       | OECD TG 408 | 4     | No data | ✓              | No data      |
|         | 24-months    | OECD TG 451 | 5a    | No data | ✓              | No data      |
|         | 12-months    | OECD TG 451 | 5b    | No data | No data        | No data      |

With regard to sufficiency of T (thyroid) dataset reference is made to the EFSA Technical report on the outcome of the pesticides peer review meeting on general recurring issues in mammalian toxicology (EFSA supporting publication 2020:EN-1837):

- Regarding the availability of THs (thyroid hormones) measurements to evaluate the sufficiency of the adversity related to the T-modality:
   "EFSA clarified that in the old versions of the OECD TGs the measurement of thyroid hormones was optional. Therefore, in these cases, the lack of THs measurement cannot be used to conclude that the dataset for adversity is not complete. However, it should
- Moreover, "the dataset for thyroid can be considered complete on a case-by-case basis, pending whether the duration and doses selection allow a proper assessment of

be noted that in the new versions of OECD TGs, THs measurement is mandatory."

the thyroid histology (thyroid histopathology is generally considered more sensitive and informative than thyroid weight).

- 2) Have T-mediated patterns of adversity been observed?
- 3) Where adverse effects observed at doses considered to overcome the MTD or be considered too high (exaggerated) based on the overall toxicity profile?
- 4) If a convincing pattern of adverse effect/s for T mediated parameters can be drawn, the MoA analysis should be performed. However, following a coherence analysis, in most of the cases, the work can be finalized, and ED criteria are met.
- 5) Are there in-vitro and/or in-vivo mechanistic data? If yes, do they provide positive or negative findings?

# **Overall conclusion for T-modality:**

## EAS-modalities

1) Completeness of the database: is the dataset complete for the ED assessment in line with the ED GD?

Overall, the following parameters were not investigated:

- Estrus cycle
- Sperm parameters (sperm count, sperm motility, sperm morphology)
- Age at vaginal opening
- Age at preputial separation
- Quantitative evaluation of primordial follicles of the ovaries
- Epididymis weight
- Ovary weight
- Uterus weight
- Prostate weight
- Seminal vesicles weight
- Coagulating gland weight

| 2) Ha | ve EATS mediated | patterns of adversity | been observed? |
|-------|------------------|-----------------------|----------------|
|-------|------------------|-----------------------|----------------|

- 3) Where adverse effects observed at doses considered to overcome the MTD or be considered too high (exaggerated) based on the overall toxicity profile?
- 4) If a convincing *pattern of adverse effect/s* for EATS mediated parameters can be drawn, the MoA analysis should be performed. However, following a coherence analysis, in most of the cases, the work can be finalized, and ED criteria are met.
- 5) Are there in-vitro and/or in-vivo mechanistic data? If yes, do they provide positive or negative findings?

# **EAS effects & systemic toxicity**

#### Rat studies:

• 90-day (feeding) - ID: 1

(Doses: 6.56/7.71, 133/153, 658/783, 1036/1124 mkd in M/F)

Study NOAEL = 6.6/7.7 mkd

## At 1036/1124 mkd (15000 ppm):

#### **EAS parameters:**

- ↑ Mean relative testes weight (↑ 29% stat signif). ↑ Absolute testis weight (5% not stat signif)
- No effect on:
  - Vagina histopathology
  - Uterus histopathology (with cervix)
  - Thyroid histopathology
  - Testis histopathology
  - Seminal vesicles histopathology
  - o Prostate histopathology (with seminal vesicles and coagulating glands)
  - Ovary histopathology
  - Mammary gland histopathology (female)
  - o Epididymis histopathology

#### Systemic toxicity:

- Body weight: ↓ body weight in M (↓ 19% stat signif) and F (17% stat signif)
- Food consumption: ↓ food consumption in M (↓ 10% stat signif) and F (13% stat signif)
- Food efficiency (0-91 days):  $\downarrow$  food efficiency in M ( $\downarrow$  19% stat signif) and F (20% stat signif)
- Spleen weight: stat signif. ↑ in rel-to-body spleen weight in M (↑31%) and F (↑30%)
- **Spleen histopathology:** Extramedullary hematopoiesis in M (9/10 vs 3/10 in controls) and F (7/10 vs 0/10 in controls)
- Liver weight: stat signif. ↑ in rel-to-body liver weight in M (↑20%) and F (↑28%)
- Kidney weight: stat signif. ↑ in rel-to-body kidney weight in M (↑12%) → in females there is ↑
   8.8% not stat signif
- Kidney histopathology: hemosiderosis (pigment in proximal tubules) in M (4/10 vs 0/10) and F (6/10 vs 0/10)
- Heart weight: stat signif. ↑ in rel-to-body heart weight in M (↑24%) and F (↑24%)
- Clinical chemistry and haematology:
  - ↑ in MCV in M (↑ 9%, stat signif) and F (↑ 5% stat signif)
  - ↑ reticulocyte count in M (↑53% stat signif) and F (↑ 230% stat signif)
  - Lymphocytosis: ↑ lymphocytes in M (↑ 39%). No effect in F.

**Brain weight:** stat signif.  $\uparrow$  in rel-to-body brain weight in M ( $\uparrow$ 20%) and F ( $\uparrow$ 24%).

### At 658/783 mkd (10000 ppm):

#### **EAS** parameters:

- ↑ Mean relative testes weight (↑ 27% stat signif). ↑ absolute testes weight (↑ 12% stat signif)
- No measurements on:
  - Vagina histopathology
  - Uterus histopathology (with cervix)
  - Thyroid histopathology
  - Testis histopathology
  - Seminal vesicles histopathology

- o Prostate histopathology (with seminal vesicles and coagulating glands)
- Ovary histopathology
- Mammary gland histopathology (female)
- Epididymis histopathology

#### Systemic toxicity:

- Body weight: ↓ body weight in M (↓ 12% stat signif) and F (14% stat signif)
- Food efficiency (0-91 days):  $\downarrow$  food efficiency in M ( $\downarrow$  19% stat signif) and F (20% stat signif)
- Spleen weight: stat signif. ↑ in rel-to-body spleen weight in M (↑22%) and F (↑24%)
- **Spleen histopathology:** Extramedullary hematopoiesis in M (9/10 vs 3/10 in controls) and F (4/10 vs 0/10 in controls)
- Liver weight: stat signif. ↑ in rel-to-body liver weight in F (↑33%). No effect in males.
- Kidney weight: No stat signif changes.
  - $\uparrow$  in rel-to-body kidney weight in F ( $\uparrow$ 9.3%). No effect in males.
- Kidney histopathology: hemosiderosis (pigment in proximal tubules) in M (3/10 vs 0/10) and F (2/10 vs 0/10)
- Heart weight: stat signif. ↑ in rel-to-body heart weight in M (↑14%) and F (↑15%)
- Clinical chemistry and haematology:
  - ↑ in MCV in M (↑ 5%, stat signif); no stat signif ↑ in females
  - ↑ reticulocyte count in M (↑72% stat signif) and F (↑ 182% stat signif)
  - o Lymphocytosis: ↑ lymphocytes in M (↑ 37%). No effect in F.

**Brain weight:** stat signif.  $\uparrow$  in rel-to-body brain weight in M ( $\uparrow$ 13%) and F ( $\uparrow$ 23%).

## At 133/153 mkd (2000 ppm):

#### **EAS** parameters:

↑ Mean relative testes weight (↑ 10% non stat signif)

- No measurements on:
  - Vagina histopathology
  - Uterus histopathology (with cervix)
  - Thyroid histopathology
  - Testis histopathology
  - Seminal vesicles histopathology
  - Prostate histopathology (with seminal vesicles and coagulating glands)
  - Ovary histopathology
  - Mammary gland histopathology (female)
  - o Epididymis histopathology

- Body weight: ↓ body weight in M (↓ 7%) and F (3%)
- Food consumption (0-91 days): no effect
- Food efficiency (0-91 days):  $\downarrow$  food efficiency in M ( $\downarrow$  10% stat signif); no effect in females
- **Spleen histopathology:** Extramedullary hematopoiesis in F (2/10 vs 0/10 in controls). No effect in males.
- Liver weight: stat signif. ↑ in rel-to-body liver weight in F (↑11%). No effect in males.

# • 90-day (feeding) - ID: 2

(Doses: 6.20/7.54, 127/150, 646/774, 965/1070 mkd in M/F)

#### At 965/1070 mkd:

#### **EAS** parameters:

- Testis weight: 
   ↓ absolute testes weight (↓ 31% stat signif).
- Testis histopathology: Atrophy, degeneration, bilateral Leydig cell hyperplasia
   In RAR also gross observations: small testes (7/10 vs 0/10 in controls)
- Epididymis histopathology: Oligospermia, atrophy

| (ppm):                                                 | 0  | 100 | 2000 | 10000 | 15000 |
|--------------------------------------------------------|----|-----|------|-------|-------|
| (mkd):                                                 | 0  | 6.2 | 127  | 646   | 965   |
| Number of rats/group:                                  | 10 | 10  | 10   | 10    | 10    |
| Testes:                                                |    |     |      |       |       |
| Gross observation: small testes                        | 0  | 0   | 0    | 1     | 7     |
| Atrophy/degeneration, seminiferous tubules, bilateral  | 1  | 0   | 0    | 2     | 8     |
| Atrophy/degeneration, seminiferous tubules, unilateral | 0  | 0   | 2    | 1     | 1     |
| Dilatation, lumen, seminiferous tubules                | 0  | 0   | 0    | 0     | 1     |
| Hyperplasia, Leydig cell, bilateral                    | 0  | 0   | 0    | 0     | 7     |
| Hyperplasia, Leydig cell, unilateral                   | 0  | 0   | 0    | 1     | 0     |
| Epididymides:                                          |    |     |      |       |       |
| Oligospermia, bilateral                                | 1  | 0   | 0    | 2     | 8     |
| Oligospermia, unilateral                               | 0  | 0   | 1    | 1     | 1     |
| Sperm granuloma                                        | 0  | 0   | 0    | 1     | 1     |

#### No effect on:

- Vagina histopathology
- Uterus histopathology (with cervix)
- Thyroid histopathology
- Seminal vesicles histopathology
- Prostate histopathology (with seminal vesicles and coagulating glands)
- Ovary histopathology
- Mammary gland histopathology (female)

- Body weight:  $\downarrow$  body weight in M ( $\downarrow$  40% stat signif) and F ( $\downarrow$ 35% stat signif)
- Body weight gain (0-91 days):  $\downarrow$  body weight gain in M ( $\downarrow$  72% stat signif) and F ( $\downarrow$ 82% stat signif)
- Food consumption (0-91 days):  $\downarrow$  food consumption in M (34% stat signif) and F ( $\downarrow$ 19% stat signif)
- Food efficiency (0-91 days):  $\downarrow$  food efficiency in M ( $\downarrow$  56.8% stat signif) and F ( $\downarrow$ 73% stat signif)
- Spleen weight:  $\uparrow$  in rel-to-body spleen weight in M ( $\uparrow$ 42% stat signif.) and F ( $\uparrow$ 36% stat signif.)
- Liver weight: ↑ in rel-to-body liver weight in M (↑13% stat signif.) and F (↑34% stat signif.)
- **Kidney weight:**  $\downarrow$  in absolute kidney weight in M ( $\downarrow$ 34% stat signif.) and F ( $\downarrow$  22% stat signif.) Relative-to-body kidney weight was increased in F ( $\uparrow$  20% stat signif). No effect in males.
- **Kidney histopathology:** hemosiderosis (pigment in proximal tubules) in M (2/10 vs 0/10) and F (6/10 vs 0/10); tubular epithelial cell atrophy in M (1/10 vs 0/10) and F (9/10 vs 0/10).
- Clinical chemistry and haematology:
  - $\downarrow$  in RBC count in M ( $\downarrow$  18%, stat signif) and F ( $\downarrow$  16%, stat signif)
  - o  $\downarrow$  in Hb in M ( $\downarrow$  10%, stat signif) and F ( $\downarrow$  11%, stat signif)
  - $\downarrow$  in haematocrit in M ( $\downarrow$  7.5%, stat signif) and F ( $\downarrow$  11%, stat signif)
  - ↑ MCV in M (↑13% stat signif) and F (↑ 6 % stat signif)
  - ↑ reticulocyte count in M (↑342% stat signif) and F (↑ 91% stat signif)

**Brain weight:**  $\downarrow$  absolute brain weight in M ( $\downarrow$  9% stat signif).  $\uparrow$  in rel-to-body brain weight in M ( $\uparrow$ 51%) and F ( $\uparrow$ 48%).

#### At 646/774 mkd:

#### **EAS** parameters:

| (ppm):                                                              | 0  | 100 | 2000 | 10000 | 15000 |
|---------------------------------------------------------------------|----|-----|------|-------|-------|
| (mkd):                                                              | 0  | 6.2 | 127  | 646   | 965   |
| Number of rats/group:                                               | 10 | 10  | 10   | 10    | 10    |
| Testes:                                                             |    |     |      |       |       |
| Gross observation: small testes                                     | 0  | 0   | 0    | 1     | 7     |
| Atrophy/degeneration, seminiferous tubules, bilateral               | 1  | 0   | 0    | 2     | 8     |
| Atrophy/degeneration, seminiferous tubules, unilateral              | 0  | 0   | 2    | 1     | 1     |
| Atrophy/degeneration, seminiferous tubules, bilateral or unilateral | 1  | 0   | 2    | 3     | 9     |
| Dilatation, lumen, seminiferous tubules                             | 0  | 0   | 0    | 0     | 1     |
| Hyperplasia, Leydig cell, bilateral                                 | 0  | 0   | 0    | 0     | 7     |
| Hyperplasia, Leydig cell, unilateral                                | 0  | 0   | 0    | 1     | 0     |
| Epididymides:                                                       |    |     |      |       |       |
| Oligospermia, bilateral                                             | 1  | 0   | 0    | 2     | 8     |
| Oligospermia, unilateral                                            | 0  | 0   | 1    | 1     | 1     |
| Oligospermia, bilateral or unilateral                               | 1  | 0   | 1    | 3     | 9     |
| Sperm granuloma                                                     | 0  | 0   | 0    | 1     | 1     |

#### No measurement on:

- Vagina histopathology
- Uterus histopathology (with cervix)
- Thyroid histopathology
- Seminal vesicles histopathology
- o Prostate histopathology (with seminal vesicles and coagulating glands)
- Ovary histopathology
- o Mammary gland histopathology (female)

- Body weight: ↓ body weight in M (↓ 30% stat signif) and F (29% stat signif)
- Body weight gain (0-91 days):  $\downarrow$  body weight gain in M ( $\downarrow$  52% stat signif) and F ( $\downarrow$ 67% stat signif)
- Food consumption (0-91 days):  $\downarrow$  food consumption in M (24% stat signif) and F ( $\downarrow$ 19% stat signif)
- Food efficiency (0-91 days):  $\downarrow$  food efficiency in M ( $\downarrow$  38% stat signif) and F ( $\downarrow$ 59% stat signif)
- Spleen weight: ↑ in rel-to-body spleen weight in M (↑38% stat signif.) and F (↑29% stat signif.)
- Liver weight: ↑ in rel-to-body liver weight in M (↑5% stat signif.) and F (↑32% stat signif.)
- **Kidney weight:** ↓ in absolute kidney weight in M (↓21% stat signif.) and F (↓ 16% stat signif.) Relative-to-body kidney weight was increased in M (↑ 11% stat signif) and F (↑ 17% stat signif)
- **Kidney histopathology:** hemosiderosis (pigment in proximal tubules) in M (6/10 vs 0/10) and F (6/10 vs 0/10).
- Clinical chemistry and haematology:
  - $\downarrow$  in RBC count in M ( $\downarrow$  16%, stat signif) and F ( $\downarrow$  16%, stat signif)
  - o  $\downarrow$  in Hb in M ( $\downarrow$  10%, stat signif) and F ( $\downarrow$  11%, stat signif)
  - o  $\downarrow$  in haematocrit in M ( $\downarrow$  **7.4%, stat signif**) and F ( $\downarrow$  11%, stat signif)
  - ↑ MCV in M (↑8% stat signif) and F (↑ 6 % stat signif)
  - ↑ reticulocyte count in M (↑288% stat signif) and F (↑ 91% stat signif)

**Brain weight:**  $\downarrow$  absolute brain weight in M ( $\downarrow$  7% stat signif).  $\uparrow$  in rel-to-body brain weight in M ( $\uparrow$ 31%) and F ( $\uparrow$ 37%).

At 127/150 mkd: no EAS effects (LOAEL)

# • 2-generation (feeding) – ID: 8; study conducted in 1990-1991 prior to the OECD TG 416 (2001).

(Doses: 0.588 mkd, 5.81 mkd, 44.0 mkd, 89.5 mkd

At the highest dose 89.5 mkd:

#### **EAS effects:**

#### Testis weight

 $\uparrow$  relative testis weight in F0 (10%, stat. sign.) and F1 (16%, stat. sign.). No effect in abs. testes weight.

|                                     | 0<br>ppm | 10<br>ppm | 100<br>ppm      | 750<br>ppm                               | 1500<br>ppm                  |
|-------------------------------------|----------|-----------|-----------------|------------------------------------------|------------------------------|
| F₀ Males                            | 0 mkd    | 0.588 mkd | 5.81 mkd        | 44.0 mkd                                 | 89.5 mkd                     |
| Mean final body weight (g)          | 654.0    | 636.7     | 638.2           | 612.7*                                   | 591.3*                       |
| Absolute testes weight (g)          | 3.729    | 3.591     | 3.505*(↓6<br>%) | 3.719                                    | 3.670                        |
| Relative <sup>a</sup> testes weight | 0.5718   | 0.5686    | 0.5524          | <mark>0.6079*</mark><br><mark>个6%</mark> | <mark>0.6267*</mark><br>个10% |
| F <sub>1</sub> Males                | 0 mkd    | 0.785 mkd | 7.84 mkd        | 59.6 mkd                                 | 123.0 mkd                    |
| Mean final body weight (g)          | 691.7    | 681.3     | 738.4           | 647.6                                    | 619.8*                       |
| Absolute testes weight (g)          | 3.974    | 4.040     | 4.016           | 3.856                                    | 4.127                        |
| Relative <sup>a</sup> testes weight | 0.5798   | 0.6006    | 0.5477          | 0.6016                                   | <mark>0.6748*</mark><br>个16% |

<sup>&</sup>lt;sup>a</sup> Relative weight is defined as the organ to body weight ratio.

#### • Testis histopathology

No effect in F0 and F1 (control and high dose only)

Prostate histopathology

No effect in F0 and F1 (control and high dose only)

• Epididymis histopathology

No effect in F0 and F1 (control and high dose only)

Seminal vesicles histopathology

No effect in F0 and F1 (control and high dose only) (RAR, not in excel)

Coagulating gland histopathology

No effect in F0 and F1 (control and high dose only) (RAR, not in excel)

Vagina histopathology

No effect in F0 and F1 (control and high dose only)

Uterus histopathology

No effect in F0 and F1 (control and high dose only)

Ovary histopathology

No effect in F0 and F1 (control and high dose only)

Pituitary histopathology

No effect in F0 and F1 (control and high dose only)

- ↓ food consumption (6.2%, stat. sign) and food efficiency (17%, stat. sign) in M (F0)
- ↓ food efficiency (14.5%, stat. sign) in F (F0) during premating

<sup>\*</sup> Significantly different from control by the Dunnett's criteria, p <0.05.

- ↓food efficiency (6%, stat. sign) in M (F1) during premating
- ↓ food consumption (6.7%), stat. sign) during premating in F (F1)
- F0: ↓ BW (10%, stat. sign in M) & BW gain (22%, stat. sign. in M)
- F0: ↓BW during lactation (6%, stat. sign.) and gestation (6%, stat. sign) & ↓BW gain during premating (18%, stat. sign)
- F1: ↓BW & BW gain during premating (10%, stat. sign)
- F1: ↓BW during premating, lact., gest. (10%, 9%, 8%, respectively, all stat. sign.) and ↓BW gain (11%, stat. sign) during premating.
- No effect in reproductive parameters. There were no biologically or statistically significant differences in mating indices, fertility indices, or gestation length in any of the F0 or F1 treatment groups.
- ↓ F1 offspring: Pup weight (7%, stat. sign)

Body weight/nutritional parameters in F<sub>0</sub> parental rats

| 0<br>ppm | 10<br>ppm                                                                           | 100<br>ppm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 750<br>ppm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1500<br>ppm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|----------|-------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0<br>mkd | 0.588<br>mkd                                                                        | 5.81<br>mkd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 44.0<br>mkd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 89.5<br>mkd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|          |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 532.4*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 330.4    | 372.0                                                                               | 3/3.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>↓10%</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 238 4    | 222.8                                                                               | 221.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 185.5*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 230.4    | 222.0                                                                               | 221.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>↓22%</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 29 1     | 28.4                                                                                | 28 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 27.3*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 23.1     | 20                                                                                  | 20.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 27.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (↓6.2%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 0.117    | 0.111                                                                               | 0.112                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.106*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.097*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|          | -                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (↓2%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 0        | 0.764/0.741                                                                         | 7.75/7.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 115.0/114.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| mkd      | mkd                                                                                 | Ó                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mkd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | mkd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|          |                                                                                     | mkd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 308.1    | 307.7                                                                               | 312.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 293.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 293.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 470.9    | 458.1                                                                               | 471.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 444.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 441.8*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|          |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>↓</b> 6%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 353.4    | 351.5                                                                               | 353.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 327.9*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 333.5*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|          |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>↓</b> 7%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <b>↓</b> 6%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|          |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 102.0    | 99.7                                                                                | 104.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 87.8*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 83.3*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|          |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ↓14%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ↓18%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 153.3    | 147.5                                                                               | 159.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 146.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 148.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| -1.1     | -1.0                                                                                | -1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|          |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 21.1     | 20.7                                                                                | 21.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 20.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 20.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 27.8     | 26.5                                                                                | 28.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 25.2*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 25.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|          |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0.069    | 0.069                                                                               | 0.070                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.062*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.059*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|          |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (↓10.1%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (↓14.5%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0.168    | 0.167                                                                               | 0.175                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.164                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.159                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|          | 9pm 0 mkd 590.4 238.4 29.1 0.117 0 mkd 308.1 470.9 353.4 102.0 153.3 -1.1 21.1 27.8 | ppm         ppm           0         0.588           mkd         572.0           238.4         222.8           29.1         28.4           0.117         0.111           0         0.764/0.741           mkd         308.1           308.1         307.7           470.9         458.1           353.4         351.5           102.0         99.7           153.3         147.5           -1.1         -1.0           21.1         20.7           27.8         26.5           0.069         0.069 | ppm         ppm         ppm           0         0.588 mkd         5.81 mkd           590.4         572.0         573.1           238.4         222.8         221.6           29.1         28.4         28.1           0.117         0.111         0.112           0 mkd         0.764/0.741 mkd         7.75/7.8 om/s/7.8           0 mkd         0 mkd           308.1         307.7         312.5 om/s/7.8           470.9         458.1         471.7           353.4         351.5         353.0           102.0         99.7         104.6           153.3         147.5         159.3 om/s/7.2           -1.1         -1.0         -1.2           21.1         20.7         21.3 om/s/7.2           27.8         26.5         28.4           0.069         0.070 | ppm         ppm         ppm           0         0.588 mkd         5.81 mkd         44.0 mkd           590.4         572.0         573.1         558.3* ↓5%           238.4         222.8         221.6         207.5* ↓13%           29.1         28.4         28.1         27.9           0.117         0.111         0.112         0.106* (↓1.1%)           0 mkd         mkd         0 mkd         mkd           308.1         307.7         312.5         293.6 mkd           470.9         458.1         471.7         444.9           353.4         351.5         353.0         327.9* ↓7%           102.0         99.7         104.6         87.8* ↓14%           153.3         147.5         159.3         146.5           -1.1         -1.0         -1.2         4.0           21.1         20.7         21.3         20.1           27.8         26.5         28.4         25.2*           0.069         0.069         0.070         0.062* (↓10.1%) |

Calculated as g weight gain/g food consumed.

<sup>\*</sup> Significantly different from control by Dunnett's criteria, p <0.05.

|                               | 0 mkd   | 0.588 | 5.81 mkd   | 44.0 mkd         | 89.5 mkd                 |
|-------------------------------|---------|-------|------------|------------------|--------------------------|
|                               | o iliku | mkd   | 3.81 IIIKU | 44.0 IIIKu       | 89.5 IIIKU               |
| Males (premating; Day 0–105): |         |       |            |                  |                          |
| Body weight (g)               | 606.5   | 600.9 | 644.2      | 572.5            | 546.9*<br><b>↓10%</b>    |
| Body weight gain (g)          | 552.3   | 546.6 | 587.7      | 521.2            | 495.7*<br>↓10%           |
| Food consumption (g)          | 28.6    | 28.4  | 30.1       | 27.7             | 27.3                     |
| Food efficiency <sup>a</sup>  | 0.184   | 0.182 | 0.187      | 0.180            | 0.173*<br>( <b>√6%</b> ) |
| Females:                      |         |       |            |                  |                          |
| Body weight (g)               |         |       | ·          |                  |                          |
| Premating Day 105             | 329.6   | 334.7 | 337.9      | 307.8*<br>↓7%    | 295.3*<br>↓10%           |
| Gestation Day 21              | 498.0   | 484.1 | 486.7      | 464.3*<br>↓7%    | 452.1*<br>↓9%            |
| Lactation Day 21              | 367.6   | 364.2 | 367.4      | 343.4*<br>↓7%    | 336.5*<br>↓8%            |
| Body weight gain (g)          |         |       |            |                  |                          |
| Premating Day 0-105           | 276.3   | 282.1 | 284.4      | 258.2<br>↓7%     | 246.0*<br>↓11%           |
| Gestation Day 0-21            | 165.1   | 150.5 | 143.1      | 155.5            | 149.7                    |
| Lactation Day 0-21            | -16.1   | -13.8 | -13.5      | -6.0             | -2.8                     |
| Food consumption, (g)         |         |       |            |                  |                          |
| Premating Day 0-105           | 20.9    | 21.0  | 21.4       | 19.8*<br>(↓5.3%) | 19.5*<br>(↓6.7%)         |
| Gestation Day 0-14            | 26.9    | 26.1  | 27.2       | 25.6             | 24.7                     |
| Food efficiency <sup>a</sup>  |         |       |            |                  |                          |
| Premating Day 0-105           | 0.126   | 0.128 | 0.126      | 0.125            | 0.121                    |
| Gestation Day 0-14            | 0.201   | 0.183 | 0.163      | 0.177            | 0.176                    |

a Calculated as g weight gain/g food consumed.

# At 44 mkd:

•  $\uparrow$  (6%, stat. sign.) in relative testis weight in F0. No effect in abs. testis weight. No effect in F1.

- ↓ food consumption (4%) and food efficiency (9%, stat. sign) in M (F0)
- F0: ↓ BW (5%, stat. sign in M) & BW gain (13%, stat. sign. in M)
- F0: ↓BW in F during lactation (7%, stat. sign.) & ↓BW gain during premating (14%, stat. sign)
- No effect in reproductive parameters. There were no biologically or statistically significant differences in mating indices, fertility indices, or gestation length in any of the F0 or F1 treatment groups.

<sup>\*</sup> Significantly different from control by the Dunnett's criteria, p < 0.05.

# Combined chronic toxicity/oncogenicity study, 2-year feeding study in rats with interim sacrifice (ID:3a & 3b)

The study was terminated after 22 months due to poor survival.

### Deviations from OECD 453 (2018):

- Weights of epididymis, thyroids, uterus, ovaries were not measured.
- The following tissues were not collected: cervix, coagulation glands.

Doses: 0.406/0.546 mkd, 4.06/5.47 mkd, 30.6/41.5 mkd, and 64.5/87.7 mkd (M/F)

#### At 64.5/87.7 mkd:

#### **EAS effects**

Epididymis histopathology:

No effect

• Mammary gland histopathology:

 $\downarrow$  incidence of mammary masses (fibroadenomas) in F at terminal sacrifice (30/50 vs 44/48 in control)

• Ovary histopathology:

No effect. Control and high dose only

Prostate histopathology:

No effect. Control and high dose only

• Seminal vesicles histopathology:

No effect. Control and high dose only

Testis weight

↑ rel. testis weight (28%, stat. sign) and ↑ abs. testis weight (6%, not stat. sign) at interim sacrifice

↑ rel. testis weight (23%, stat. sign) and ↑ abs. testis weight (5%, not stat. sign) at terminal sacrifice

| Parameter                  | 0 mkd  | 0.406 mkd | 4.06 mkd | 30.6 mkd              | 64.5 mkd                           |
|----------------------------|--------|-----------|----------|-----------------------|------------------------------------|
| Males:                     |        |           |          |                       |                                    |
| 12-Month                   |        |           |          |                       |                                    |
| Absolute testes weight (g) | 3.803  | 3.710     | 3.776    | 3.784                 | 4.047                              |
| Relative testes weight     | 0.4571 | 0.4493    | 0.4764   | 0.5221<br><b>↑14%</b> | 0.5856 <sup>b</sup><br><b>↑28%</b> |
| 24-Month                   |        |           |          |                       |                                    |
| Absolute testes weight (g) | 3.708  | 3.668     | 3.706    | 3.768                 | 3.906                              |
| Relative testes weight     | 0.4730 | 0.5172    | 0.5203   | 0.4943                | 0.5822 <sup>b</sup><br><b>↑23%</b> |

<sup>&</sup>lt;sup>a</sup> Relative weight is defined as the organ to body weight ratio.

#### • Testis histopathology

|  | 0 mkd | 0.406<br>mkd | 4.06<br>mkd | 30.6<br>mkd | 64.5<br>mkd |  |
|--|-------|--------------|-------------|-------------|-------------|--|
|--|-------|--------------|-------------|-------------|-------------|--|

b Significantly different from control by the Dunnett's test criteria, p <0.05.

| Males: Testes                    |         |         |         |         |         |
|----------------------------------|---------|---------|---------|---------|---------|
| Number examined                  | 51      | 46      | 47      | 50      | 51      |
| Adenoma, interstitial cell       | 0       | 2       | 1       | 7*      | 7*      |
|                                  | (0%)    | (4.3%)  | (2.1%)  | (14.0%) | (13.7%) |
| Hyperplasia, interstitial cell   | 10      | 7       | 11      | 18*     | 27*     |
|                                  | (19.6%) | (15.2%) | (23.4%) | (36.0%) | (52.9%) |
| Combined adenoma and hyperplasia | 10      | 9       | 12      | 25      | 34      |

<sup>\*</sup> Statistically significant (p  $\leq$ 0.05) by the Cochran-Armitage test

#### Uterus histopathology:

No effect. Control and high dose only

#### • Vagina histopathology:

No effect. Control and high dose only

- ↓ RBC count (17%, stat. sign) , ↓ Hb (14%, stat. sign), ↓ Ht (14%, stat. sign) at interim sacrifice in M
- ↓ (stat. sign.) BW (14% in M, 16% in F) & BW gain (20% in M, 28% in F) at interim sacrifice
- $\downarrow$  (stat. sign.) in BW (14% in M, 15% in F) & BW gain (20% in M, 23% in F) at terminal sacrifice
- ↓ in triglyceride conc (46%, stat. sign) at interim sacrifice.
- 54% survival for M and 46% for F. According to the study author, the poor survival rate is not a treatment related effect but typical for this strain of rat (CrI:CD® BR)
- $\uparrow$  in rel. liver weight (13%, stat. sign) in F at interim sacrifice
- ↑ rel. brain weight (19%, stat. sign.) in M and 15% (stat. sign) in F at interim sacrifice and ↑ 16% stat. sign) in F at terminal sacrifice
- ↓abs. kidney weight (14%, stat. sign), abs. spleen weight (19%, stat. sign) in F at terminal sacrifice

| Concentration    | 0 ppm | 10 ppm    | 100 ppm  | 750 ppm               | 1500 ppm              |  |  |  |  |
|------------------|-------|-----------|----------|-----------------------|-----------------------|--|--|--|--|
| 12 months        |       |           |          |                       |                       |  |  |  |  |
| Males:           | 0 mkd | 0.406 mkd | 4.06 mkd | 30.6 mkd              | 64.5 mkd              |  |  |  |  |
| Mean body weight | 819.4 | 784.8     | 822.1    | 759.1*<br><b>↓7</b> % | 706.8*<br><b>↓14%</b> |  |  |  |  |
| Body weight gain | 568.7 | 535.3     | 570.7    | 506.6*<br><b>↓11%</b> | 456.4*<br><b>↓20%</b> |  |  |  |  |
| <u>Females</u>   | 0 mkd | 0.546 mkd | 5.47 mkd | 41.5 mkd              | 87.7 mkd              |  |  |  |  |
| Mean body weight | 418.4 | 412.1     | 417.8    | 387.6*<br>↓7%         | 350.5*<br>↓16%        |  |  |  |  |
| Body weight gain | 241.7 | 235.7     | 239.7    | 210.4*<br>↓13%        | 174.0*<br>↓28%        |  |  |  |  |
|                  |       | 22 Months |          |                       |                       |  |  |  |  |
| Males:           | 0 mkd | 0.406 mkd | 4.06 mkd | 30.6 mkd              | 64.5 mkd              |  |  |  |  |
| Mean body weight | 827.2 | 758.5     | 768.7    | 782.8                 | 712.8*<br><b>↓14%</b> |  |  |  |  |
| Body weight gain | 578.1 | 512.2     | 519.1    | 533.1                 | 463.3*<br><b>↓20%</b> |  |  |  |  |
| <u>Females</u>   | 0 mkd | 0.546 mkd | 5.47 mkd | 41.5 mkd              | 87.7 mkd              |  |  |  |  |
| Mean body weight | 463.9 | 495.6     | 485.3    | 454.5                 | 396.3*<br>↓15%        |  |  |  |  |
| Body weight gain | 287.2 | 318.8     | 313.1    | 279.6                 | 220.0*                |  |  |  |  |

|                                    |                    |                       |  | ↓23% |
|------------------------------------|--------------------|-----------------------|--|------|
| * Significantly different from cor | trol by the Dunnet | t's criteria, p <0.05 |  |      |

• No effect in pituitary-, brain-, adrenal- histopathology,

#### At 30.6/41.5 mkd:

#### **EAS** effects

Epididymis histopathology:

No effect

• Mammary gland histopathology:

↓ incidence of mammary masses (fibroadenomas) in F at terminal sacrifice (37/48 vs 44/48 in control)

Testis weight

↑ rel. testis weight (14%, not stat. sign) at interim sacrifice

No effect at terminal sacrifice

Testis histopathology

No effect at interim sacrifice

↑ Leydig cell hyperplasia (36.0%, stat. sign) and ↑ Leydig cell adenoma (14%, stat. sign) at terminal sacrifice. Outside HC data.

#### Systemic toxicity:

- ◆ RBC count (10%, stat. sign), ↓ Hb (8%, stat. sign), ↓ Ht (7%, stat. sign) at interim sacrifice in
- ↓ (stat. sign.) BW (7% in M, 7% in F) & BW gain (11% in M, 13% in F) at interim sacrifice
- No effect in BW and BW gain in both M&F (<10%) at terminal sacrifice
- 41% survival for M and 35% for F. According to the study author, the poor survival rate is not a treatment related effect but typical for this strain of rat (CrI:CD® BR)

#### Mouse studies:

• 18-month (feeding) - ID: 5

(Doses: 1.37/1.86 mkd, 20.9/27.7 mkd, 349/488 mld, and 1024/1360 mkd (M/F))

Deviations from OECD 451 (2018): cervix and coagulating glands were not collected

#### At 1024/1360 mkd:

#### **EAS effects**

No effect in:

Vagina histopathology

Uterus histopathology

Ovary histopathology

Mammary gland histopathology

Testis weight and histopathology

Seminal vesicles histopathology

# Prostate histopathology

Epididymis histopathology

## **Systemic toxicity:**

• ↓BW gain (11% in M, 16%, stat. sign in F)

# Dog studies:

# • 3-month (feeding) – ID: 6

(Doses: 3.90/3.70, 146/160, and 268/251 mkd in M/F)

# At 268/251 mkd in M/F:

# **EAS parameters:**

• Testis weight: ↓ absolute testes weight

- Testis histopathology: Bilateral tubular atrophy, decrease thickness of the seminiferous tubules, cytoplasmic vacuolation of germinal epithelium
- Epididymis histopathology: Aspermatogenesis, oligospermia

| (ppm):                                                                                      | 0           | 100          | 4000         | 8000         |  |  |  |  |  |  |  |
|---------------------------------------------------------------------------------------------|-------------|--------------|--------------|--------------|--|--|--|--|--|--|--|
| (mkd):                                                                                      | 0           | 3.9          | 146          | 268          |  |  |  |  |  |  |  |
| Number of dogs/group:                                                                       | 4           | 4            | 4            | 4            |  |  |  |  |  |  |  |
| Organ weights                                                                               |             |              |              |              |  |  |  |  |  |  |  |
| [Note: Confirm that there are no separate measurements on testes and epididymides weight in |             |              |              |              |  |  |  |  |  |  |  |
| original study report (page 240)]                                                           |             |              |              |              |  |  |  |  |  |  |  |
| Absolute testes/epididymides weight                                                         | 16.3        | 15.8         | 12.3         | 7.5**        |  |  |  |  |  |  |  |
|                                                                                             | 15.6        | <b>↓</b> 25% | <b>↓</b> 64% |              |  |  |  |  |  |  |  |
| Relative <sup>a</sup> (to body weight) testes/epididymides weight                           | 1.46        | 1.60         | 1.12         | 0.81*        |  |  |  |  |  |  |  |
|                                                                                             | 1.40        |              |              |              |  |  |  |  |  |  |  |
| Relative <sup>b</sup> (to brain weight) testes/epididymides weight                          | 2.04        | 2.06         | 1.56         | 0.97*        |  |  |  |  |  |  |  |
|                                                                                             | 2.04        | 2.00         | <b>↓24%</b>  | <b>↓</b> 52% |  |  |  |  |  |  |  |
| Incidences of microsco                                                                      | pic effects |              |              |              |  |  |  |  |  |  |  |
| Testis                                                                                      |             |              |              |              |  |  |  |  |  |  |  |
| Small (gross lesion)                                                                        | 0           | 0            | 2            | 4            |  |  |  |  |  |  |  |
| Tubular atrophy, bilateral                                                                  | 0           | 0            | 1            | 3            |  |  |  |  |  |  |  |
| Tubular atrophy, unilateral                                                                 | 0           | 0            | 1            | 0            |  |  |  |  |  |  |  |
| Germinal epithelium: cytoplasmic vacuolation                                                | 0           | 0            | 0            | 2            |  |  |  |  |  |  |  |
| overall                                                                                     |             |              | 2            | 3            |  |  |  |  |  |  |  |
| Epididymides                                                                                |             |              |              |              |  |  |  |  |  |  |  |
| Small (gross lesion)                                                                        | 0           | 0            | 0            | 2            |  |  |  |  |  |  |  |
| Aspermatogenesis                                                                            | 0           | 0            | 1            | 3            |  |  |  |  |  |  |  |
| Oligospermia                                                                                | 0           | 0            | 1            | 1            |  |  |  |  |  |  |  |
| Cell debris                                                                                 | 0           | 1            | 4            | 3            |  |  |  |  |  |  |  |

#### • No effect on:

- Uterus histopathology (with cervix)
- o Thyroid weight
- o Thyroid histopathology
- Ovary histopathology

- **Mortality:** 2/4 females became emaciated and during the study and were sacrificed *in extremis* on days 76 & 78.
- Body weight: ↓ body weight in M (↓ 25% stat signif) and F (↓ 15% stat signif)
- Food consumption (0-13 weeks): overall no significant effect
   (Food consumption slightly decreased during the 1<sup>st</sup> month of the study due to poor palatability corrected for the remaining of the study & food consumption was not affected.)
- Liver weight: ↑ in rel-to-body liver weight in M (↑60% stat signif.) and F (↑55% stat signif.)
- Liver histopathology: Bile stasis (f); Pigmented sinusoidal macrophages (m&f)
- **Bone marrow:** hypercellularity (RMS: this is indicative of regenerative anaemia, see also haematology changes).

| (ppm):                                | 0 | 100 | 4000 | 8000 |  |  |  |  |  |  |
|---------------------------------------|---|-----|------|------|--|--|--|--|--|--|
| (mkd):                                | 0 | 3.9 | 146  | 268  |  |  |  |  |  |  |
| Number of dogs/group:                 | 4 | 4   | 4    | 4    |  |  |  |  |  |  |
| Males                                 |   |     |      |      |  |  |  |  |  |  |
| Liver                                 | 0 | 0   | 4    | 3    |  |  |  |  |  |  |
| Enlarged (gross lesion)               |   |     |      |      |  |  |  |  |  |  |
| Sinusoidal macrophages: brown pigment | 1 | 0   | 3    | 3    |  |  |  |  |  |  |
| Bile stasis                           | 0 | 0   | 0    | 0    |  |  |  |  |  |  |
| Sternal marrow                        |   |     |      |      |  |  |  |  |  |  |
| Hypercellularity                      | 0 | 0   | 0    | 2    |  |  |  |  |  |  |
| Femoral marrow                        |   |     |      |      |  |  |  |  |  |  |
| Hypercellularity                      | 0 | 0   | 0    | 1    |  |  |  |  |  |  |
| Females                               |   |     |      |      |  |  |  |  |  |  |
| Liver                                 |   |     |      |      |  |  |  |  |  |  |
| Enlarged (gross lesion)               | 0 | 0   | 4    | 2    |  |  |  |  |  |  |
| Sinusoidal macrophages: brown pigment | 0 | 0   | 4    | 4    |  |  |  |  |  |  |
| Bile stasis                           | 0 | 0   | 3    | 4    |  |  |  |  |  |  |
| Sternal marrow                        |   |     |      |      |  |  |  |  |  |  |
| Hypercellularity                      | 0 | 0   | 0    | 4    |  |  |  |  |  |  |
| Femoral marrow                        |   |     |      |      |  |  |  |  |  |  |
| Hypercellularity                      | 0 | 0   | 0    | 4    |  |  |  |  |  |  |

#### • Clinical chemistry and haematology:

- $\downarrow$  in RBC count in M ( $\downarrow$  26%, stat signif) and F ( $\downarrow$  23%, stat signif)
- $\circ$   $\downarrow$  in Hb in M ( $\downarrow$  22%, stat signif) and F ( $\downarrow$  22%, stat signif)
- o  $\downarrow$  in haematocrit in M ( $\downarrow$  18%, stat signif) and F ( $\downarrow$  16%, stat signif)
- ↑ MCV in M (↑11% stat signif) and F (↑8 % stat signif)
- ↑ reticulocyte count in M (↑131% stat signif) and F (↑ 82% stat signif)
- ↑ liver enzyme activities:
  - ALT: ↑ in M (↑65%) and F (↑ 20%) not stat signif
  - **ASAT:**  $\uparrow$  in M ( $\uparrow$ 24%) and F ( $\uparrow$ 7%) not stat signif
  - ALP: ↑ in M (↑97%) and F (↑ 98% stat signif)

#### At 146/160 mkd in M/F:

#### **EAS** parameters:

- Testis weight: ↓ absolute testes weight
- · Testis histopathology: Bilateral tubular atrophy, decrease thickness of the seminiferous tubules,

#### cytoplasmic vacuolation of germinal epithelium

• Epididymis histopathology: Aspermatogenesis, oligospermia

#### → See Table above.

- No measurement on:
  - Uterus histopathology (with cervix)
  - Thyroid histopathology
  - Ovary histopathology

#### Systemic toxicity:

- Body weight: No effect.
- Body weight gain (0-13 weeks): No effect.
- Food consumption (0-13 weeks): No effect.
- Liver weight: ↑ in rel-to-body liver weight in M (↑30% stat signif.) and F (↑42% stat signif.)
- Liver histopathology: Bile stasis (f); Pigmented sinusoidal macrophages (m&f) → see Table, above
- Bone marrow: No effect
- Clinical chemistry and haematology: No effect

At 3.9/3.7 mkd: no EAS effects

• 12-month (feeding) - ID: 7

(Doses: 0.99/1.2, 26.9/27.7 and 111.8/93.9 mkd in M/F)

#### No effects on EAS modalities.

The following parameters have been tested:

Vagina histopathology

Uterus histopathology (with cervix)

Thyroid weight

Thyroid histopathology

Testis weight

Testis histopathology

Prostate histopathology (with seminal vesicles and coagulating glands)

Ovary histopathology

Mammary gland histopathology (female)

Epididymis histopathology

#### Systemic toxicity:

At 111.8/93.9 mkd (LOAEL): Mortality (1/5 dogs at the top dose). Decreased BWG ( $\downarrow$  42% wks 0-13 and  $\downarrow$ 18% weeks 0-52), RBC parameters and liver toxicity ( $\uparrow$  ALP,  $\uparrow$  liver weight by 36% and centrilobular hepatocellular hypertrophy).

NOAEL = 26.9/27.7 mkd

# Mechanistic in vivo

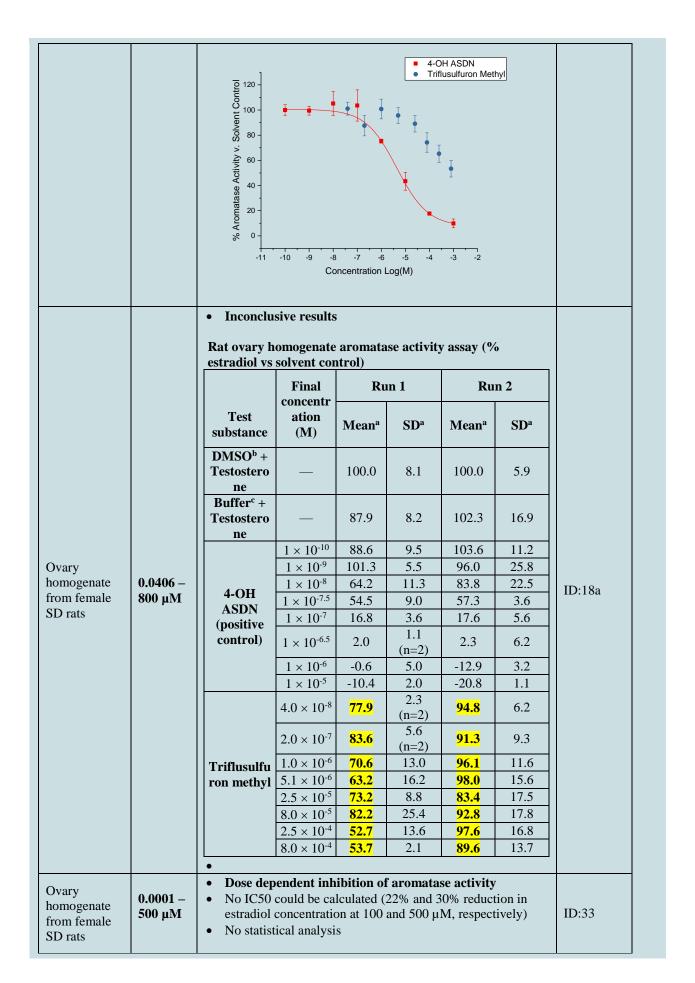
# Aromatase inhibition (in vivo data)

| Reference                                                                           | Treatme<br>nt<br>duration | Doses                                                    | Observe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | d Effect                                                                                                                                                                                                                                                                                                                                    |                            |                       |                           |                          |
|-------------------------------------------------------------------------------------|---------------------------|----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-----------------------|---------------------------|--------------------------|
| Study ID: 21e                                                                       | 1 year                    | 0, 10, 100,<br>750, 1500<br>ppm<br>0.406, 4.06,<br>30.6, | 13.8%, 3 64.5 mk  Incre 13.3%* a                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <ul> <li>Decreased serum estradiol levels:</li> <li>13.8%, 34.5%, 68.4%*, 47%* for 0.406, 4.06, 30.6,</li> <li>64.5 mkd respectively</li> <li>Increased LH and FSH levels at 64.5 mkd:</li> <li>13.3%* and 34%* respectively</li> <li>Increased serum testosterone levels:</li> <li>65% and 89%* for 30.6, 64.5 mkd respectively</li> </ul> |                            |                       |                           |                          |
|                                                                                     |                           | 64.5 mg/kg<br>bw/day                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                                                                                                                                                                                                                                                                           | ormone lev                 |                       |                           |                          |
| Hormonal<br>analysis of<br>male rats fed                                            |                           | (gavage)                                                 | Conc<br>mkd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Testost<br>erone<br>ng/mL                                                                                                                                                                                                                                                                                                                   | Estradiol<br>pg/mL         | Prola<br>ctin<br>ng/m | dard devia<br>LH<br>ng/mL | FSH<br>ng/mL             |
| for 1 year (1- year interim sacrifice of                                            |                           |                                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.888<br>(0.576)                                                                                                                                                                                                                                                                                                                            | 4.852<br>(3.609)           | 1.741<br>(1.07<br>7)  | 0.182<br>(0.055)          | 6.742<br>(1.532)         |
| the chronic 2-<br>year rat<br>carcinogenicit                                        |                           |                                                          | 0.406                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.810<br>(0.677)                                                                                                                                                                                                                                                                                                                            | 4.183<br>13.8%<br>(3.420)  | 2.766<br>(4.05<br>2)  | 0.155<br>(0.032)          | 6.197<br>(1.261)         |
| y study)                                                                            |                           |                                                          | 4.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.966<br>(0.957)                                                                                                                                                                                                                                                                                                                            | 3.179<br>34.5%<br>(3.443)  | 1.831<br>(1.29<br>8)  | 0.178<br>(0.053)          | 7.279<br>(1.744)         |
|                                                                                     |                           |                                                          | 30.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.467<br><mark>65%</mark><br>(0.701)                                                                                                                                                                                                                                                                                                        | 1.534*<br>68.4%<br>(1.874) | 1.362<br>(1.18<br>7)  | 0.179<br>(0.050)          | 7.594<br>(1.515)         |
|                                                                                     |                           |                                                          | 64.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.677*<br><mark>89%</mark><br>(1.535)                                                                                                                                                                                                                                                                                                       | 2.574*<br>47%<br>(2.836)   | 1.602<br>(0.75<br>2)  | 0.210<br>13.3%<br>(0.064) | 9.028*<br>34%<br>(2.109) |
|                                                                                     |                           |                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | tistically sign<br>5-93, Suppler                                                                                                                                                                                                                                                                                                            | ificant by Jonck           | cheere's te           | st, p <0.05 (fi           | rom HLR                  |
| Study ID: 21a                                                                       |                           |                                                          | Decreased absolute accessory sex glands weight (all doses)     Decreased serum estradiol levels (all doses)     Increased LH, FSH and PRL levels (not statistically significant with high inter-individual variations)     Decreased hepatic aromatase activity (not statistically significant with high inter-individual variation)  All the above mentioned effects were observed in the presence of severely decreased BW and BW gain. However, they were not observed in the same magnitude |                                                                                                                                                                                                                                                                                                                                             |                            |                       |                           |                          |
| In vivo<br>mechanistic<br>2-week oral<br>(gavage)<br>study in male<br>rat (HLR 575- |                           |                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                             |                            |                       |                           |                          |

| 93). Start of<br>dosing in<br>animals 79<br>weeks old.                    |         |                                                | or were not observed at all in the pair-fed (to 2000 mkd) control (a group with equally decreased BW and BW gain):                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                   |                              |                                             |                          |                           |                                           |             |             |             |
|---------------------------------------------------------------------------|---------|------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|------------------------------|---------------------------------------------|--------------------------|---------------------------|-------------------------------------------|-------------|-------------|-------------|
|                                                                           |         | 0, 1000,<br>1500, 2000                         | Table: Percentage change in comparison to control (ad libitum)                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                   |                              |                                             |                          |                           |                                           |             |             |             |
|                                                                           | 2 weeks | mg/kg bw/day  + pair-fed control to 2000 mg/kg | bw/day + pair-fed control to                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | mg/kg<br>bw/day<br>+ pair-fed<br>control to                                       | bw/day + pair-fed control to | mg/kg<br>bw/day<br>+ pair-fed<br>control to | Param.                   | 0<br>mkd<br>(ad<br>lib.)  | 0 mkd<br>(pair-<br>fed to<br>2000<br>mkd) | 1000<br>mkd | 1500<br>mkd | 2000<br>mkd |
|                                                                           |         | bw/day                                         | BW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                                                 | <mark>12.7%</mark> *         | <mark>10.2%</mark> *                        | <mark>14%</mark> *       | <mark>13.5%</mark> *      |                                           |             |             |             |
|                                                                           |         |                                                | BWG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                                                 | <mark>81%</mark> *           | <mark>73.9%</mark> *                        | <mark>96%</mark> *       | <mark>87.9%</mark> *      |                                           |             |             |             |
|                                                                           |         |                                                | Absolute<br>accessory<br>sex glands<br>weight (g)                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                                                                 | <mark>↓16.9%</mark><br>*     | <mark>↓26%</mark> *                         | <mark>↓34.7%</mark><br>* | <mark>↓29.7%</mark><br>*# |                                           |             |             |             |
|                                                                           |         |                                                | Oestradiol<br>(pg/mL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                                                                 | <mark>↓14%</mark>            | <mark>↓68%</mark> *                         | <mark>↓86%</mark> *      | <mark>√86.6%</mark><br>*# |                                           |             |             |             |
|                                                                           |         |                                                | LH (ng/mL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                 | <u>↑12.3%</u>                | <b>↑33%</b>                                 | <b>个13.5%</b>            | <mark>↑59.9%</mark>       |                                           |             |             |             |
|                                                                           |         |                                                | FSH<br>(ng/mL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                 | <b>个2.4%</b>                 | <b>个41%</b>                                 | <b>↑40.8%</b>            | <b>↑22.2%</b>             |                                           |             |             |             |
|                                                                           |         |                                                | PRL<br>(ng/mL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                 | <u>↑</u>                     | <b>个28%</b>                                 | <mark>个37.2%</mark>      | <mark>个50.2%</mark>       |                                           |             |             |             |
|                                                                           |         |                                                | Hepatic<br>aromatase<br>activity<br>(ng/mL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                 | <u>↑</u>                     | <b>↓17.5%</b>                               | <mark>↓26%</mark>        | <b>↓18.5%</b>             |                                           |             |             |             |
|                                                                           |         |                                                | hCG stin Increase bw/day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | control<br>ntrol by the<br>riteria, alpha<br>2000mg/kg<br>el in 200<br>2000 mg/kg | a = 0.05<br>g:<br>0 mg/kg    |                                             |                          |                           |                                           |             |             |             |
| Effects of triflusulfuron methyl on hormonal concentration s in male rats | 28 days | 0, 0.1, 0.5, 5<br>mg/kg<br>bw/day              | <ul> <li>Slight effects on serum estradiol levels:</li> <li>Mean rate of serum estradiol increase over the dosing period (from pre-study to week 4) was statistically lower in the rats dosed with 5 mg/kg bw/day compared to the control group (decrease of 44%).</li> <li>Not statistically significant decrease in estradiol levels (5.3%, 18%, 26% at 0.1, 0.5 and 5 mg/kg bw/day)</li> <li>No clinical signs of toxicity, no effects on body weight, food consumption, or food efficiency.</li> </ul> |                                                                                   |                              |                                             |                          |                           |                                           |             |             |             |

| Study ID: 12  In vivo mechanistic 14-day (gavage) in rat      | 14 days | 0, 1500,<br>2000 mg/kg<br>bw/day                           | Inconclusive results due to small sample size (N=4) and high variability of the results between treated groups:  • No statistically significant increase in the clearance values of [14C]testosterone: mean clearance values CLO—6: 583, 838 and 889 mL/h/kg for the control, 1500 mg/kg bw/day and 2000 mg/kg bw/day dose groups respectively                                                                                                                                   |
|---------------------------------------------------------------|---------|------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 15-day intact male rat assay for detecting endocrine activity | 14 days | 0, 500, 1000,<br>1500, 2000<br>mg/kg<br>bw/day<br>(gavage) | <ul> <li>Results from the O'Connor study were not reproduced:</li> <li>Decreased bw and bwg</li> <li>Not statistically significant decrease in absolute seminal vesicles weight</li> <li>No effect on estradiol, testosterol, LH and FSH levels</li> <li>Statistically significantly decreased estradiol levels only after hCG challenge at 2000 mg/kg bw/day</li> <li>Statistically significantly increased FSH levels only after hCG challenge at 2000 mg/kg bw/day</li> </ul> |

# Estrogen and Androgen receptor (in vivo data)


- The active substance did not show any agonistic or antagonistic activity for AR in an OECD 458 mechanistic study for concentrations up to 10 μM.
- The active substance did not show any agonistic or antagonistic activity for ER in an OECD 455 mechanistic study for concentrations up to  $10 \, \mu M$ .

## Mechanistic in vitro

Aromatase activity (in vitro data): Results indicate a weak inhibitory response in aromatase (at high concentrations). An IC50 could be calculated only after C8-induction of aromatase activity (IC50 = 174  $\mu$ M).

| Test system                                               | Concent rations tested | Results                                                                                                                                                                                 | Reference |
|-----------------------------------------------------------|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| Hepatic<br>microsomes<br>from C8-<br>treated male<br>rats | 10 – 500<br>μM         | <ul> <li>Statistically significant inhibition of C8-induced aromatase activity at all doses</li> <li>IC50 = 174 μM</li> <li>Weak inhibitory response</li> </ul>                         | ID:21d    |
| Hepatic<br>microsomes<br>from male rats<br>(non induced)  | 0.1 – 500<br>μM        | <ul> <li>Inhibition of aromatase activity</li> <li>No IC50 could be calculated (25% inhibition at 500 μM)</li> <li>Weak inhibitory response</li> <li>No statistical analysis</li> </ul> | ID:17     |

|                                                          |                    | <ul> <li>Statis two h hCG-statis</li> <li>Statis produte</li> <li>Mo ef stimu</li> <li>Summ</li> <li>Tested concent ration</li> </ul> |                      |                                               |                                               |                                               |        |
|----------------------------------------------------------|--------------------|---------------------------------------------------------------------------------------------------------------------------------------|----------------------|-----------------------------------------------|-----------------------------------------------|-----------------------------------------------|--------|
|                                                          |                    | ( <b>µM</b> )                                                                                                                         | +hCG                 | -hCG <sup>a</sup>                             | +hCG <sup>a</sup>                             | -hCG <sup>a</sup>                             |        |
| Isolated                                                 | 0.1 –              | 0                                                                                                                                     | 14.603               | 3.297                                         | 18.739                                        | 9.956                                         |        |
| Leydig cells                                             | 1000 μΜ            | 0.4                                                                                                                                   | (1.669)<br>15.194    | (0.091)                                       | (3.747)<br>17.262                             | (1.829)<br>8.393                              | ID:21f |
|                                                          |                    | 0.1                                                                                                                                   | (1.214)              | (0.246)                                       | (0.721)                                       | (1.022)                                       |        |
|                                                          |                    | 0.5                                                                                                                                   | 14.726               | 3.479                                         | 15.795                                        | 9.795                                         |        |
|                                                          |                    |                                                                                                                                       | (0.747)<br>14.611    | (0.944)<br>4.186                              | (2.754)<br>18.316                             | (1.637)<br>10.895                             |        |
|                                                          |                    | 1                                                                                                                                     | (0.868)              | (0.771)                                       | (1.309)                                       | (1.818)                                       |        |
|                                                          |                    | 10                                                                                                                                    | 15.505<br>(0.398)    | 4.838<br>(0.374)                              | 15.440<br>17.6%<br>(0.323)                    | 9.613<br>(1.989)                              |        |
|                                                          |                    | 100                                                                                                                                   | 16.142<br>(1.574)    | 4.585<br><b>39.1%</b>                         | 12.969 <sup>b</sup> 30.8%                     | 4.836 <sup>b</sup> 51.4%                      |        |
|                                                          |                    | 1000                                                                                                                                  | 13.250<br>(2.873)    | (1.168)<br>6.556 <sup>b</sup><br><b>98.9%</b> | (2.574)<br>8.113 <sup>b</sup><br><b>56.7%</b> | (2.693)<br>4.825 <sup>b</sup><br><b>51.5%</b> |        |
|                                                          |                    | aTost for                                                                                                                             |                      | (1.628)                                       | (1.013) dicates a trend                       | (1.178)                                       |        |
|                                                          |                    | 0.05  bSignification analysis                                                                                                         |                      |                                               |                                               |                                               |        |
| Human<br>recombinant<br>CYP19<br>microsomes              | 0.0406 –<br>800 μM |                                                                                                                                       | hibition (relatione) | lease of tritiate                             | ed water from                                 | [ <sup>3</sup> H]-                            | ID:19  |
| Hepatic<br>microsomes<br>from male rats<br>(non induced) | 0.0406 –<br>800 μM | • Inhib<br>from<br>• No IO<br>• Weak<br>• No st                                                                                       | ID:18a               |                                               |                                               |                                               |        |
|                                                          |                    |                                                                                                                                       |                      |                                               | romatase Act<br>e Control, 4-                 |                                               |        |



|                      |                              |        | % Estradiol formed at 100 μM and 500 μM triflusulfuron methyl in experiment 1 and 2. |                                                          |                                               |  |  |  |  |  |
|----------------------|------------------------------|--------|--------------------------------------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------|--|--|--|--|--|
|                      |                              |        | Test item concentra ment tion No.                                                    |                                                          | Average % estradiol formed across experiments |  |  |  |  |  |
|                      |                              | 100 μΜ | 1 2                                                                                  | 71.0% [79.4%]<br>85.3%                                   | 78% [ <mark>82%</mark> ]                      |  |  |  |  |  |
|                      |                              | 500 μΜ | 1 2                                                                                  | 64.0% [71.7%]<br>76.1%                                   | 70% [ <mark>74%</mark> ]                      |  |  |  |  |  |
|                      |                              |        |                                                                                      | rradiol formed compared t<br>ling replicate C in experin | •                                             |  |  |  |  |  |
| Human placental cell | 0.01,<br>0.04,<br>0.16, 0.6, | •      | <ul> <li>↓E2 (70%*) at 40μM</li> <li>No effect in progesterone</li> </ul>            |                                                          |                                               |  |  |  |  |  |
| line (JEG-3)         | 2.5, 10,<br>40 μM            |        |                                                                                      | 19 gene expression                                       |                                               |  |  |  |  |  |

# Dopamine receptor (in vitro data)

• The active substance did not specifically bind to the dopamine D2 receptor in the in vitro dopamine receptor binding assay up to 1.34 mM.

Table 2. EAS-mediated patterns of adversity (effects on testes and epididymides)

| Study ID | Duration     | Effect<br>dose<br>(mkd) | Testes weight                                    | Testes<br>histopathology | Epididymides<br>weight | Epididymides<br>histopathology | Hormones/Enzymes                                                                                                 | Systemic toxicity                                                                                                                                   |
|----------|--------------|-------------------------|--------------------------------------------------|--------------------------|------------------------|--------------------------------|------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| 11       | 28-days      | 0.1                     |                                                  |                          |                        |                                | • ↓ serum<br>estradiol levels<br>(5.3%)                                                                          | <ul> <li>No clinical signs of toxicity,</li> <li>No effects on body weight,</li> <li>No effects on food consumption, or food efficiency.</li> </ul> |
| 3        | 22-<br>month | 0.406                   | No effect                                        | No effect                | Not measured           | No effect                      |                                                                                                                  | Dose below NOAEL                                                                                                                                    |
| 11       | 28-days      | 0.5                     |                                                  |                          |                        |                                | • ↓ serum estradiol levels (18%)                                                                                 | <ul> <li>No clinical signs of toxicity,</li> <li>No effects on body weight,</li> <li>No effects on food consumption, or food efficiency.</li> </ul> |
| 8        | 2-gen        | 0.588                   | No effect                                        | No gross lesions         | Not measured           | No gross lesions               |                                                                                                                  | Dose below NOAEL                                                                                                                                    |
| 3        | 22-<br>month | 4.06                    | No effect                                        | No effect                | Not measured           | No effect                      |                                                                                                                  | Study NOAEL                                                                                                                                         |
| 11       | 28-days      | 5                       |                                                  |                          |                        |                                | <ul> <li>↓ serum estradiol levels (26%)</li> <li>Lower rate (by 44%)* of estradiol increase with time</li> </ul> | <ul> <li>No clinical signs of toxicity,</li> <li>No effects on body weight,</li> <li>No effects on food consumption, or food efficiency.</li> </ul> |
| 8        | 2-gen        | 5.81                    | No effect                                        | No measured              | Not measured           | No measured                    | Not measured                                                                                                     | Study NOAEL                                                                                                                                         |
| 2        | 90-day       | 6.2                     | No effect                                        | No effect                | Not measured           | No effect                      | Not measured                                                                                                     | Study NOAEL                                                                                                                                         |
| 1        | 90-day       | 6.6                     | No effect                                        | Not measured             | Not measured           | Not measured                   | Not measured                                                                                                     | Study NOAEL                                                                                                                                         |
| 3a, 21e  | 12-<br>month | 30.6                    | ↑ rel. testis<br>weight (14%,<br>not stat. sign) | No effect                | Not measured           | No effect                      | <ul> <li>↓ serum estradiol levels (68.4%)*</li> <li>↑ serum testosterone (65.0%)</li> </ul>                      | <ul> <li>Haematology (anaemia) in M</li> <li>↓ BW (7%) in M</li> <li>↓ BW gain (11%) in M</li> </ul>                                                |

| Study ID | Duration     | Effect<br>dose<br>(mkd) | Testes weight                                                                                              | Testes<br>histopathology                                                                                                          | Epididymides<br>weight | Epididymides<br>histopathology | Hormones/Enzymes                                                                                                                       | Systemic toxicity                                                                                                                                                                                                    |
|----------|--------------|-------------------------|------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|------------------------|--------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3b       | 22-<br>month | 30.6                    | No effect                                                                                                  | ↑ Leydig cell hyperplasia (36.0%, stat. sign) and ↑ Leydig cell adenoma (14%, stat. sign) at terminal sacrifice. Outside HC data. | Not measured           | No effect                      | Not measured                                                                                                                           | <ul> <li>Haematology (anaemia) in M</li> <li>↓ BW (5%) in M</li> <li>↓ BW gain (8%) in M</li> </ul>                                                                                                                  |
| 8        | 2-gen        | 44.0                    | 个 (6%, stat. sign.) in relative testis weight in F0. No effect in abs. testis weight. No effect in F1.     | Not measured                                                                                                                      | Not measured           | Not measured                   | Not measured                                                                                                                           | <ul> <li>↓ food consumption (4%) and food efficiency (9%, stat. sign) in M (F0)</li> <li>F0: ↓ BW (5%, stat. sign in M) &amp; BW gain (13%, stat. sign. in M)</li> </ul>                                             |
| 3a, 21e  | 12-<br>month | 64.5                    | ↑ rel. testis weight (28%, stat. sign) and ↑ abs. testis weight (6%, not stat. sign) at interim sacrifice. | No effect                                                                                                                         | Not measured           | No effect                      | <ul> <li>↓serum estradiol levels (47%*)</li> <li>↑ serum testosterone (89.0%)*</li> <li>↑ LH (13.3%*)</li> <li>↑ FSH (34%*)</li> </ul> | <ul> <li>Haematology (anaemia) in M</li> <li>↓ BW (14% in M, 16% in F)</li> <li>↓ BW gain (20% in M, 28% in F)</li> <li>↑ in rel. liver weight in F</li> <li>↑ rel. brain weight in M and F</li> </ul> Above the MTD |
| 3b       | 22-<br>month | 64.5                    | ↑ rel. testis weight (23%, stat. sign) and ↑ abs. testis                                                   | ↑ Leydig cell<br>hyperplasia stat.<br>sign (52.9% vs                                                                              | Not measured           | No effect                      | Not measured                                                                                                                           | <ul> <li>↓ BW (14% in M, 15% in F)</li> <li>↓ BW gain (20% in M, 23% in F)</li> <li>54% survival for M and 46% for F.</li> <li>(According to the study author, the poor</li> </ul>                                   |

| Study ID | Duration | Effect<br>dose<br>(mkd) | Testes weight                                                                                                | Testes<br>histopathology                                                            | Epididymides weight | Epididymides<br>histopathology | Hormones/Enzymes                                   | Systemic toxicity                                                                                                                                                                                                                                                                                                 |
|----------|----------|-------------------------|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|---------------------|--------------------------------|----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          |          |                         | weight (5%,<br>not stat. sign)<br>at terminal<br>sacrifice                                                   | 19.6% in controls) and  ↑ Leydig cell adenoma stat. sign (13.7%, vs 0% in controls) |                     |                                |                                                    | survival rate is not a treatment related effect but typical for this strain of rat (Crl:CD BR)  • ↑ rel. brain weight in M and F  • ↓ abs. kidney weight,  • ↓ abs. spleen weight (19%, stat. sign) in F  Above the MTD                                                                                           |
| 8        | 2-gen    | 89.5                    | ↑ relative testis weight in F0 (10%, stat. sign) and F1 (16%, stat. sign.). No effect in abs. testes weight. | No effect in F0<br>and F1                                                           | Not measured        | No effect in F0<br>and F1      | Not measured                                       | <ul> <li>↓ food consumption</li> <li>↓ food efficiency (&gt; 10%)</li> <li>↓ BW (10%) &amp; BW gain (22%) in F0/F1 M</li> <li>↓ Pup weight (7%, stat. sign) - F1</li> </ul> Above the MTD                                                                                                                         |
| 2        | 90-day   | 127                     | No effect                                                                                                    | No effect                                                                           | Not measured        | No effect                      | Not measured                                       | <ul> <li>Spleen weight ↓ (rel)</li> <li>Liver weight ↑ (rel)</li> <li>Kidney weight ↓ (abs)</li> <li>Kidney histopathology</li> <li>Food consumption &amp; efficiency ↓</li> <li>Clinical chemistry and haematology (anaemia)</li> <li>Brain weight ↓ (abs)</li> <li>Body weight ↓ (9% in M, 16% in F)</li> </ul> |
| 1        | 90-day   | 133                     | No effect                                                                                                    | Not measured                                                                        | Not measured        | Not measured                   | Not measured                                       | <ul> <li>Body weight ↓ (&lt;10%)</li> <li>Food efficiency ↓ in M</li> <li>Spleen histopathology in F</li> <li>Liver weight ↑ (rel) in F</li> </ul>                                                                                                                                                                |
| 20       | 15-Days  | 500                     | Not measured                                                                                                 | Not measured                                                                        | Not measured        | Not measured                   | No effect on:     serum estradiol     testosterone | <ul> <li>◆ Body weight</li> <li>◆ Body weight gain</li> <li>◆ No clinical signs</li> </ul>                                                                                                                                                                                                                        |

| Study ID | Duration | Effect<br>dose<br>(mkd) | Testes weight                                                           | Testes<br>histopathology                                           | Epididymides<br>weight | Epididymides<br>histopathology                                                  | Hormones/Enzymes | Systemic toxicity                                                                                                                                                                                                                                                                                                                                                                                                             |
|----------|----------|-------------------------|-------------------------------------------------------------------------|--------------------------------------------------------------------|------------------------|---------------------------------------------------------------------------------|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          |          |                         |                                                                         |                                                                    |                        |                                                                                 | • LH<br>• FSH    | <ul> <li>         ◆ absolute seminal vesicles weight (8.7%)</li> </ul>                                                                                                                                                                                                                                                                                                                                                        |
| 2        | 90-day   | 646                     | No effect                                                               | Atrophy/degener ation, seminiferous tubules, bilateral             | Not measured           | Oligospermia,<br>bilateral<br>Oligospermia,<br>unilateral<br>Sperm<br>granuloma | Not measured     | <ul> <li>Body weight ↓ (30% in M, 29% in F)</li> <li>Body weight gain (0-91 days) ↓</li> <li>Food consumption (0-91 days) ↓</li> <li>Food efficiency (0-91 days) ↓</li> <li>Spleen weight ↑ (rel)</li> <li>Liver weight ↑ (rel)</li> <li>Kidney weight ↓ (abs) &amp; ↑ (rel)</li> <li>Kidney histopathology</li> <li>Clinical chemistry and haematology (anaemia)</li> <li>Brain weight ↓ (abs) &amp; ↑ (rel) in M</li> </ul> |
|          |          |                         |                                                                         |                                                                    |                        |                                                                                 |                  | Dose above MTD                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1        | 90-day   | 658                     | ↑ absolute testes weight (↑ 12% stat signif)                            | Not measured                                                       | Not measured           | Not measured                                                                    | Not measured     | <ul> <li>Body weight ↓ (12% in M, 14% in F)</li> <li>Food consumption ↓ in F</li> <li>Food efficiency (0-91 days) ↓</li> <li>Spleen weight ↑ (rel)</li> <li>Spleen histopathology</li> <li>Liver weight ↑ (rel) in F</li> <li>Kidney histopathology</li> <li>Heart weight ↑ (rel)</li> <li>Clinical chemistry and haematology (anaemia)</li> <li>Brain weight ↑ (rel)</li> </ul> Dose above MTD                               |
| 2        | 90-day   | 965                     | <ul><li>↓ absolute testes weight</li><li>(↓ 31% stat signif).</li></ul> | Atrophy,<br>degeneration,<br>bilateral Leydig<br>cell hyperplasia. | Not measured           | Oligospermia, atrophy                                                           | Not measured     | <ul> <li>Body weight ↓ (40% in M, 35% in F)</li> <li>Body weight gain (0-91 days) ↓</li> <li>Food consumption (0-91 days) ↓</li> <li>Food efficiency (0-91 days) ↓</li> </ul>                                                                                                                                                                                                                                                 |

| Study ID  | Duration | Effect<br>dose<br>(mkd) | Testes weight                                 | Testes<br>histopathology               | Epididymides weight | Epididymides<br>histopathology | Hormones/Enzymes                                                                                                                                      | Systemic toxicity                                                                                                                                                                                                                                                                                                                                                                                                    |
|-----------|----------|-------------------------|-----------------------------------------------|----------------------------------------|---------------------|--------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|           |          |                         |                                               | Gross<br>observations:<br>small testes |                     |                                |                                                                                                                                                       | <ul> <li>Spleen weight ↑ (rel)</li> <li>Liver weight ↑ (rel)</li> <li>Kidney weight ↓ (abs) &amp; ↑ (rel F)</li> <li>Kidney histopathology</li> <li>Clinical chemistry and haematology (anaemia)</li> <li>Brain weight ↓ (abs M) &amp; ↑ (rel)</li> </ul> Dose above MTD                                                                                                                                             |
| 21a, b, c | 15-Days  | 1000                    | No effect in abs. testis weight.              | Not measured                           | Not measured        | Not measured                   | <ul> <li>↓serum estradiol levels (68%*)</li> <li>↑ LH (33%)</li> <li>↑ FSH (41%)</li> <li>↑ PRL (28%)</li> <li>↓ Hepatic aromatase (17.5%)</li> </ul> | <ul> <li>↓ Body weight (10%)</li> <li>↓ Body weight gain (74%)</li> <li>↓ Absolute accessory sex glands (prostate, coagulating glands, seminal vesicles) weight (g) – 26%</li> </ul>                                                                                                                                                                                                                                 |
| 1         | 90-day   | 1036                    | ↑ Absolute testis weight (5% not stat signif) | No effects                             | Not measured        | No effects                     | Not measured                                                                                                                                          | <ul> <li>Body weight ↓ (19% in M, 17% in F)</li> <li>Food consumption ↓</li> <li>Food efficiency (0-91 days) ↓</li> <li>Spleen weight ↑ (rel)</li> <li>Spleen histopathology</li> <li>Liver weight ↑ (rel)</li> <li>Kidney weight ↑ (rel)</li> <li>Kidney histopathology</li> <li>Heart weight ↑ (rel)</li> <li>Clinical chemistry and haematology (anaemia)</li> <li>Brain weight ↑ (rel)</li> </ul> Dose above MTD |
| 21a, b, c | 15-Days  | 1500                    | Not measured                                  | Not measured                           | Not measured        | Not measured                   | ↓serum estradiol                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                      |

| Study ID  | Duration | Effect<br>dose<br>(mkd) | Testes weight | Testes<br>histopathology | Epididymides<br>weight | Epididymides<br>histopathology | Hormones/Enzymes                                                                                                                                                          | Systemic toxicity                                                                                                                                                                                                           |
|-----------|----------|-------------------------|---------------|--------------------------|------------------------|--------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|           |          |                         |               |                          |                        |                                | levels (86%*)                                                                                                                                                             | <ul> <li>◆ Body weight gain (96%)</li> <li>◆ Absolute accessory sex glands (prostate, coagulating glands, seminal vesicles) weight (g) – 34.7%*</li> <li>◆ Dose above MTD</li> </ul>                                        |
| 12        | 14-Days  | 1000                    | Not measured  | Not measured             | Not measured           | Not measured                   | ↑ in     testosterone     clearance  (Inconclusive results     due to small sample     size (N=4) and high     variability of the     results between     treated groups) |                                                                                                                                                                                                                             |
| 20        | 15-Days  | 1000                    | Not measured  | Not measured             | Not measured           | Not measured                   | No effect on:     serum estradiol     testosterone     LH     FSH                                                                                                         | <ul> <li>↓ Body weight</li> <li>↓ Body weight gain</li> <li>No clinical signs</li> <li>↓ absolute seminal vesicles weight (19.7%*)</li> </ul>                                                                               |
| 20        | 15-Days  | 1500                    | Not measured  | Not measured             | Not measured           | Not measured                   | No effect on:     serum estradiol     testosterone     LH     FSH                                                                                                         | <ul> <li>↓ Body weight</li> <li>↓ Body weight gain</li> <li>No clinical signs</li> <li>↓ absolute seminal vesicles weight (19.4%*)</li> </ul>                                                                               |
| 21a, b, c | 15-Days  | 2000                    | Not measured  | Not measured             | Not measured           | Not measured                   | <ul> <li>↓serum estradiol levels (86.6%*)</li> <li>↑ LH (59.9%)</li> <li>↑ FSH (22.2%)</li> <li>↑ PRL (50.2%)</li> </ul>                                                  | <ul> <li>\$\\$\\$\\$ Body weight (13.5%)</li> <li>\$\\$\\$\\$Body weight gain (87.9%)</li> <li>\$\\$\\$\\$\\$ Absolute accessory sex glands (prostate, coagulating glands, seminal vesicles) weight (g) - 29.7%*</li> </ul> |

| Study ID | Duration | Effect<br>dose<br>(mkd) | Testes weight | Testes<br>histopathology | Epididymides<br>weight | Epididymides<br>histopathology | Hormones/Enzymes                                                                                                                                                                                          | Systemic toxicity                                                                                                                                                                                                                                                                                                                                           |
|----------|----------|-------------------------|---------------|--------------------------|------------------------|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          |          |                         |               |                          |                        |                                | • ↓ Hepatic aromatase (18.5%)                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                             |
|          |          |                         |               |                          |                        |                                | Pairfed control animals:  • ↓serum estradiol levels (14%)  • ↑ LH (12.3%)  • ↑ FSH (2.4%)  • PRL: no increase  • Hepatic aromatase: no decrease  With hCG challenge  • ↑Testosterone (92%)  • ↓E2 (75.6%) | <ul> <li>Pairfed control animals:</li> <li>↓ Body weight (12.7%)</li> <li>↓ Body weight gain (81%)</li> <li>↓ Absolute accessory sex glands (prostate, coagulating glands, seminal vesicles) weight (g) – 16.9% With hCG challenge</li> <li>↓ Absolute accessory sex glands (prostate, coagulating glands, seminal vesicles) weight (g) – 32.5%*</li> </ul> |
| 12       | 14-Days  | 2000                    | Not measured  | Not measured             | Not measured           | Not measured                   | • ↑ in testosterone clearance  (Inconclusive results due to small sample size (N=4) and high variability of the results between treated groups)                                                           |                                                                                                                                                                                                                                                                                                                                                             |
| 20       | 15-Days  | 2000                    | Not measured  | Not measured             | Not measured           | Not measured                   | No effect on:                                                                                                                                                                                             | <ul> <li>↓ Body weight</li> </ul>                                                                                                                                                                                                                                                                                                                           |

| Study ID | Duration | Effect<br>dose<br>(mkd) | Testes weight | Testes<br>histopathology | Epididymides<br>weight | Epididymides<br>histopathology | Hormones/Enzymes                                                                                                                                                                       | Systemic toxicity                                                                                                     |
|----------|----------|-------------------------|---------------|--------------------------|------------------------|--------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
|          |          |                         |               |                          |                        |                                | <ul> <li>serum estradiol</li> <li>testosterone</li> <li>LH</li> <li>FSH</li> <li>Changes after hCG challenge:</li> <li>↓serum estradiol levels (22%)</li> <li>↑ FSH (23.5%)</li> </ul> | <ul> <li>↓ Body weight gain</li> <li>No clinical signs</li> <li>↓ absolute seminal vesicles weight (10.4%)</li> </ul> |

# **Overall conclusion for EAS-modalities:**

Hazard

**MOA** analysis

**Uncertainty analysis**