

Strategie *in silico* di predizione di tossicità applicate alle proteine

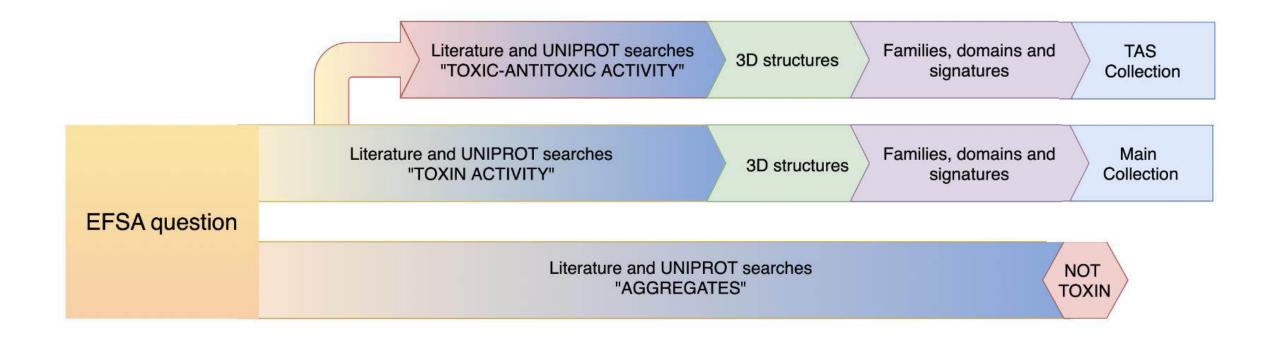
Ivano Eberini e Luca Palazzolo

Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti" Università degli Studi di Milano, Milano, Italia

Some proteins can cause adverse effects in humans and animals, via a variety of mechanisms and in a variety of settings (Dang and Van Damme, 2015; Franceschi et al., 2017; Lucas et al., 2018).

• In the scientific literature the term 'toxic proteins' generally refers to *proteins of <u>exogenous</u> origin capable of causing adverse effects to human beings or animals in the context of an <u>offence/defence paradigm</u>.*

On the basis of <u>Gene Ontology (GO)</u> definition of toxin activity, toxic proteins (or toxins) can be defined as proteins that *interact selectively with one or more biological molecules in <u>another organism</u> (the "target" organism), <u>initiating pathogenesis</u> (leading to an abnormal, generally detrimental state) in the target organism.*


Various plants, animals and bacteria produce toxic proteins to prevail in hostile environments.

The toxic activity of such proteins is achieved via a variety of mechanisms.

For our purpose, it was considered useful to cluster toxins into two groups:

- proteins causing toxic effects per se, acting as monomers or homo-multimers; these toxic proteins can be found in animal venoms, in plants and in bacteria.
- toxins acting in the context of toxin-antitoxin systems, i.e., proteins causing a toxic effect only in case of perturbation of the toxin to antitoxin concentration equilibrium; these toxins are found only in bacteria.

Search Pipeline

Question	Which proteins are associated with a well- recognized toxic activity?	Term: Synon
Keyword Rationale	To select relevant studies concerning proteins with associated toxic activity per se from the comprehensive set of literature previously compiled the following keywords were used in the UniProtKB search: " <u>Toxin activity and Reviewed:Yes</u> " and <u>"Toxin activity and Reviewed:No</u> " The search strategy was based on the term	Defini
	"Toxin activity" described in Gene Ontology (GO)	
	Annotation database, since this term was as the	Parent
	most relevant term to address the terms of	terms
	reference of this work. This term was used as the UniProtKB search term. The full definition of	Catego
	this term as provided by the GO is reported in	Id:
	the table beside.	

Term:	Toxin activity
Synonyms:	toxin receptor binding
Definition:	Interacting selectively with one or more biological molecules in another organism (the 'target' organism), initiating pathogenesis (leading to an abnormal, generally detrimental state) in the target organism. The activity should refer to an evolved function of the active gene product, i.e., one that was selected for. Examples include the activity of botulinum toxin, and snake venom.
Parent terms:	is-a molecular function
Category:	Molecular Function
ld:	GO:0090729

Searches in UniProtKB database - Overview

UniProt string	Reviewed:YES		Reviewed:NO	
"Toxin activity"		6,964		47,831

Data on 6,964 proteins with an associated well-recognised toxic activity ("Toxin activity and Reviewed:Yes") were downloaded from <u>UniProtKB (March 2020)</u>. These proteins compose the Main Collection.

Data on 47,831 proteins with an associated well-recognised toxic activity ("Toxin activity and Reviewed:NO") were downloaded from <u>UniProtKB (March 2020)</u>.

Method	Number of experimentally- solved structures
X-ray	1441
NMR	586
Model	55
Electron microscopy	31

Out of 6,964 proteins identified in this search, <u>765</u> have associated one or more experimentally-derived 3D structure/s.

A total of <u>5,298</u> models were downloaded from the <u>Swiss-Model repository</u> and stored into our Collection. There are some toxins with two or more associated models in the SM repository.

Question	How to extend the toxic protein Main Collection with UniProtKB annotated proteins considering the outcome of the primary search (identification of a new search term)?
Keywords	In order to select relevant studies concerning proteins with some associated toxic effect but not covered by the GO term toxin activity, the following keywords were used "Toxin-antitoxin system and Reviewed:Yes" and "Toxin-antitoxin system and Reviewed:No".
Rationale	Some proteins identified through the primary search were noted to belong to a toxin- antitoxin system (TAS); however, it was observed that not all of these TAS proteins were associated with the GO term "Toxin activity" in the UniProtKB database but they were linked to toxin activity in the peer-reviewed literature. In fact, the term "toxin activity" in UniProtKB refers to proteins that have a well-recognized toxic activity per se, and that interact primarily with proteins of the target organism. Toxins that belong to TAS primarily interact with their antitoxins and can interact with proteins of a target organism only if the toxin-antitoxin equilibrium is disrupted. Based on the above observations, a pearl growing strategy was applied to identify these additional TAS toxins.

Searches in UniProtKB database – Entries

Search string (UniProt)	Reviewed: Yes	Reviewed: No	
Toxin-Antitoxin System	627		155,039

Number of selected toxins for TAS Collection

Papers in the three source literature databases for the TAS Collection

String search	PubMed	WOS	SCOPUS
"toxin-antitoxin system"	410	420	776
toxin-antitoxin (AND) system	1,075	1,260	1,060

Method	Number of experimentally- solved structures
	solveu structures
X-ray	256
NMR	19
Electron microscopy	3

Out of the 627 identified TAS proteins, 114 have associated one or more experimentally-derived 3D structures.

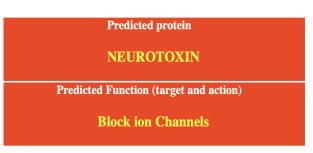
A total of 356 models were downloaded from the <u>Swiss-Model repository</u> and stored into the TAS Collection. Also in this case, there are some toxins with 2 or more associated models in the SM repository.

Main Collection

TAS Collection

Source	Number of families/domains/signatures		
PFAM	288		
INTERPRO	599		
PROSITE	138		
CATH-GENE3D	8		
SUPFAM	94		
PRINTS	66		
SMART	62		
PANTHER	33		
TIGRFAMs	27		
PIRSF	25		
CDD	35		

Source	Number of		
	families/domains/signatures		
PFAM	92		
INTERPRO	159		
PROSITE	11		
CATH-GENE3D	1		
SUPFAM	21		
PRINTS	2		
SMART	9		
PANTHER	17		
TIGRFAMs	21		
PIRSF	12		
CDD	7		


Test of predictive tools

NTXPred

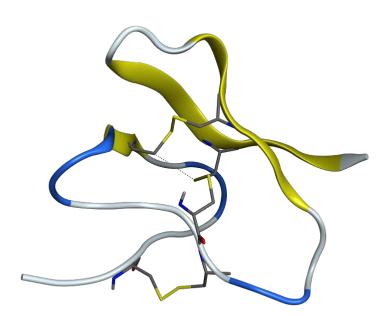
Dataset	Method	Sensitivity	Specificity	Accuracy
TP+TN1	Amino acid	0.95	1	1
TP+TN2	Amino acid	0.95	1	1
TP+TN1	Dipeptide	0.95	1	1
TP+TN2		0.95	1	1
TP+TN1	PSI-BLAST	0.95	1	1
TP+TN2		0.95	1	1

BTXPred

Dataset	Method	Sensitivity	Specificity	Accuracy
TP+TN1	Amino acid	0.6	0.05	0.3
TP+TN2	(SVM)	0.6	1	0.8
TP+TN1	Dimensional (C) (NA)	0.3	0.25	0.275
TP+TN2	Dipeptide (SVM)	0.3	1	0.65

Predicted protein
Bacterial Toxin

Clantox


4/19 21.1% P3 - Toxin-like
2/19 10.5% P2 - Probably toxin-like
5/19 26.3% P1 - Possibly toxin-like
8/19 42.1% N - Probably not toxin-like

Server	Hove Anout Search	Tocus Statistics	CLARRIPLEATION	
	SEQUE	INCE		
	Proteir	n List		
four search: subsequence = MKLTCVVIVAVLLLTACQLITAL	DDSRGTQKHRSLRSTTKVSKAT	DCIEAGNYCGPTVMKIC	CGFCSPYSKICMNYPKN	
Found 1 entry.		Select / Deselect All	FASTA 🚺 Form	at

Dataset	Method	Sensitivity	Specificity	Accuracy
TP+TN1	Less conservative	0.2	1	0.6
TP+TN2	Less conservative	0.2	1	0.6
TP+TN1	Conservative	0.5	1	0.76
TP+TN2	Conservative	0.5	1	0.76
TP+TN1	Mara concernative	0.6	1	0.8
TP+TN2	More conservative	0.6	1	0.8
				ConoServer

Dataset	Sensitivity	Specificity	Accuracy
TP+TN1	1	1	1
TP+TN2	1	1	1

Test of predictive tools

Knottin

Dataset	Method	Sensitivity	Specificity	Accuracy
TP+TN1	Loss concorrectivo	0.5	0.85	0.675
TP+TN2	Less conservative	0.5	1	0.75
TP+TN1	More conservative	0.85	0.85	0.85
TP+TN2		0.85	1	0.925

ToxinPred

Dataset	Sensitivity	Specificity	Accuracy
TP+TN	0.6	0.95	0.78

Overall Conclusions

- An <u>extensive literature and protein database search</u> was carried out.
- All the information was gathered from <u>reference</u> and mainly <u>manually annotated</u> protein databases, considered the <u>golden standard</u> sources by the scientific community.
- Data on protein sequence, structure and activity and key literature entries were <u>retrieved</u>, analysed and collected.
- Two comprehensive Collections of proteins (Main and TAS), associated with toxic effects and related relevant information (knowledgebase), were generated and can be <u>automatically updated</u> by our Toxapex software.
- This updatable knowledgebase is <u>preparatory</u> for the development of a <u>novel risk assessment strategy</u> for poorly characterized proteins.

> RSC Adv. 2020 Jun 4;10(36):21292-21308. doi: 10.1039/d0ra02701d. eCollection 2020 Jun 2.

A joint optimization QSAR model of fathead minnow acute toxicity based on a radial basis function neural network and its consensus modeling

Yukun Wang ¹², Xuebo Chen ²

Affiliations + expand

PMID: 35518745 PMCID: PMC9054390 DOI: 10.1039/d0ra02701d

Free PMC article

> J Chem Inf Model. 2021 Feb 22;61(2):653-663. doi: 10.1021/acs.jcim.0c01164. Epub 2021 Feb 3.

Large-Scale Modeling of Multispecies Acute Toxicity End Points Using Consensus of Multitask Deep Learning Methods

Sankalp Jain ¹, Vishal B Siramshetty ¹, Vinicius M Alves ², Eugene N Muratov ², Nicole Kleinstreuer ³ ⁴, Alexander Tropsha ², Marc C Nicklaus ⁵, Anton Simeonov ¹, Alexey V Zakharov ¹

Affiliations + expand PMID: 33533614 PMCID: PMC8780008 DOI: 10.1021/acs.jcim.0c01164 Free PMC article Insieme di tecniche basate su reti neurali artificiali organizzate in diversi strati, dove ogni strato calcola i valori per quello successivo affinché l'informazione venga elaborata in maniera sempre più completa. > PLoS Comput Biol. 2021 Jul 2;17(7):e1009135. doi: 10.1371/journal.pcbi.1009135. eCollection 2021 Jul.

Leveraging high-throughput screening data, deep neural networks) and conditional generative adversarial networks to advance predictive toxicology

Adrian J Green¹, Martin J Mohlenkamp², Jhuma Das³, Meenal Chaudhari⁴, Lisa Truong⁵, Robyn L Tanguay⁵, David M Reif¹

Affiliations + expand

PMID: 34214078 PMCID: PMC8301607 DOI: 10.1371/journal.pcbi.1009135

Free PMC article

> Chem Biol Drug Des. 2021 Aug;98(2):248-257. doi: 10.1111/cbdd.13894. Epub 2021 Jun 7.

In silico prediction of drug-induced ototoxicity using machine learning and deep learning methods

Xin Huang ¹, Fang Tang ², Yuqing Hua ^{1 3}, Xiao Li ^{1 4}

Affiliations + expand PMID: 34013639 DOI: 10.1111/cbdd.13894
 Review
 > Mol Divers. 2021 Aug;25(3):1409-1424. doi: 10.1007/s11030-021-10239-x.

 Epub 2021 Jun 10.

Machine learning models for classification tasks related to drug safety

Anita Rácz¹, Dávid Bajusz², Ramón Alain Miranda-Quintana³, Károly Héberger⁴

Affiliations + expand

PMID: 34110577 PMCID: PMC8342376 DOI: 10.1007/s11030-021-10239-x

Free PMC article

> Sensors (Basel). 2022 Oct 26;22(21):8185. doi: 10.3390/s22218185.

Predicting Chemical Carcinogens Using a Hybrid Neural Network Deep Learning Method

Sarita Limbu¹, Sivanesan Dakshanamurthy¹

Affiliations + expand PMID: 36365881 PMCID: PMC9653664 DOI: 10.3390/s22218185 Free PMC article

Towards novel risk assessment procedures

• In parallel to the well-known and validated strategies for risk assessment of chemicals, such as QSAR, the produced knowledgebase may help develop a comprehensive in silico risk assessment strategy for new proteins.

• Procedures could be set and tested with Cooper's statistics, in the same way as to what has already been extensively done in the past for chemicals.

• Homology detection can be used for inferring toxic properties from well characterized entries of our knowledgbase, since homologous proteins share general architecture and functions.

• BLASTing our knowledgebase, instead of the whole UniProtKB database, will increase the probability to identify phylogenetic relationships between the investigated query and a set of known and well-annotated toxins.

• Additional and more sensitive strategies, for detecting distant homology with toxic entries, can be implemented by using multiple alignments/profiles, specific domains and/or molecular signatures and hidden Markov models (HMM).

• Moreover artificial intelligence/machine learning approaches could also be applied combining findings from the methods as the above-mentioned in order to try to increase the accuracy of predictive risk assessment for proteins.